Marco<br><br>We just used the Heigenvectors function from <br><br><a href="http://numpy.scipy.org/numpydoc/numpy-18.html#pgfId-306314">http://numpy.scipy.org/numpydoc/numpy-18.html#pgfId-306314</a><br><br>This particular array interface for Python is getting a bit aged. We found
<br>it adequate for smallish (50-100 item) datasets, but had less success<br>with larger collections.<br><br>There is a huge body of work on numerical linear algebra. I'd be interested<br>in hearing how you do with this technology and what you finish up doing.
<br><br>Chris<br><br><br><div><span class="gmail_quote">On 31/08/2007, <b class="gmail_sendername">Marco Baroni</b> <<a href="mailto:marco.baroni@unitn.it">marco.baroni@unitn.it</a>> wrote:</span><blockquote class="gmail_quote" style="border-left: 1px solid rgb(204, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;">
Dear All,<br><br>Does anybody know of existing tools to perform spectral clustering (as<br>described, e.g., in Brew / Schulte im Walde: Spectral clustering for<br>German verbs, EMNLP 2002)? [I guess generating the affinity matrix and
<br>using a standard clustering algorithm on the eigenvector matrix is<br>easy, so what I'm really asking for is a tool to perform the spectral<br>decomposition...]<br><br>Thanks.<br><br>Regards,<br><br>Marco<br><br><br>
<br><br><br>--<br>Marco Baroni<br>CIMeC, University of Trento<br><a href="http://www.form.unitn.it/~baroni">http://www.form.unitn.it/~baroni</a><br><br><br>_______________________________________________<br>Corpora mailing list
<br><a href="mailto:Corpora@uib.no">Corpora@uib.no</a><br><a href="http://mailman.uib.no/listinfo/corpora">http://mailman.uib.no/listinfo/corpora</a><br></blockquote></div><br>