<div dir="ltr"><div class="gmail_extra">One of our recommendations is to compare results from different taggers.
Another recommendation is to use a combination of performance metrics
because accuracy alone does not necessarily denote success at minority
class recognition. We often compare accuracy versus balanced
classification rate, where the latter is easy to compute - see for
example our LREC paper: "Predicting Phrase Breaks in Classical and
Modern Standard Arabic Text" (Sawalha et al., 2012).<br><br>Thank you Claire for the good tips. I'm now reading the paper.<br><br><div class="gmail_quote">On Wed, Dec 5, 2012 at 4:56 AM, Claire Brierley <span dir="ltr"><<a href="mailto:C.Brierley@leeds.ac.uk" target="_blank">C.Brierley@leeds.ac.uk</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">redicting Phrase Breaks in Classical and Modern Standard Arabic Text</blockquote></div><br><br clear="all">
<br>-- <br><div dir="ltr"><font size="1">Emad Mohamed<br>aka Emad Nawfal<br><span dir="auto">Université du Québec à Montréal</span><br></font></div><br>
</div></div>