<div class="gmail_quote"><div><font face="arial, helvetica, sans-serif">We are releasing the dataset of 15,935 *Similarity-based pseudowords* that model all the ambiguous nouns in WordNet 3.0. </font><span style="font-family:arial,helvetica,sans-serif">A pseudoword is generated for each </span><span style="font-family:arial,helvetica,sans-serif">ambiguous noun by selecting, for each of its senses, the most suitable monosemous representative. </span><span style="font-family:arial,helvetica,sans-serif">These pseudowords can be leveraged for creating large-scale pseudosense-annotated datasets.</span></div>
<div><font face="arial, helvetica, sans-serif"><br></font></div><div><span style="font-family:arial,helvetica,sans-serif">Further information and the download link are provided in the following web page:</span></div><div>
<a href="http://lcl.uniroma1.it/pseudowords/" target="_blank"><font face="arial, helvetica, sans-serif" color="#000099">http://lcl.uniroma1.it/pseudowords/</font></a></div>
<div><font face="arial, helvetica, sans-serif"><br></font></div><div><span style="font-family:arial,helvetica,sans-serif">This dataset is released together with the paper:</span></div><div><font face="arial, helvetica, sans-serif"><br>
</font></div><div><table style="font-family:'Times New Roman'"><tbody><tr><td><font face="arial, helvetica, sans-serif">Mohammad Taher Pilehvar and Roberto Navigli. Paving the Way to a Large-scale Pseudosense-annotated Dataset. In <i>Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2013) </i>, pages 1100-1109, Atlanta, USA, June 10-12, 2013.<br>
</font></td></tr></tbody></table></div>
</div><br>