<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
</head>
<body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; ">
<div apple-content-edited="true"><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-variant: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; "><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-variant: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; "><span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-variant: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; ">
<div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; ">
<span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-variant: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; ">
<div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; ">
<div>
<div>
<h1 id="article-title-1" itemprop="headline"><font class="Apple-style-span" face="Arial" size="3"><span class="Apple-style-span" style="font-weight: normal;">A method for integrating and ranking the evidence for biochemical pathways by mining reactions from
text</span></font></h1>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
Makoto Miwa, Tomoko Ohta, Rafal Rak, Andrew Rowley, Douglas B. Kell, Sampo Pyysalo and Sophia Ananiadou</div>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
Bioinformatics 2013, 29(13), i44-i52 and Proceedings of ISMB 2013</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<a href="http://bioinformatics.oxfordjournals.org/content/29/13/i44.abstract">http://bioinformatics.oxfordjournals.org/content/29/13/i44.abstract</a></div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
Abstract</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
=======</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
Motivation</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
---------------</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language
in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. </div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
Method</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
-----------</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries
are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several
ranking methods, using various heuristic and machine-learning approaches.</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
Results</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
----------</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based
system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText.</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
Availability</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
--------------</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
An online demonstration of PathText 2 and the annotated corpus are available for research purposes at
<a href="http://www.nactem.ac.uk/pathtext2/">http://www.nactem.ac.uk/pathtext2/</a>. </div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
--------</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
Paul Thompson<br>
Research Associate<br>
School of Computer Science<br>
National Centre for Text Mining<br>
Manchester Institute of Biotechnology<br>
University of Manchester<br>
131 Princess Street<br>
Manchester<br>
M1 7DN<br>
UK<br>
Tel: 0161 306 3091<br>
<a href="http://personalpages.manchester.ac.uk/staff/Paul.Thompson/">http://personalpages.manchester.ac.uk/staff/Paul.Thompson/</a></div>
<div style="font-family: Helvetica; font-size: medium; font-style: normal; font-weight: normal; ">
<br>
</div>
</div>
</span><br class="Apple-interchange-newline">
</div>
</span><br class="Apple-interchange-newline">
</span><br class="Apple-interchange-newline">
</span></div>
<br>
</body>
</html>