
A scaling lawfor the validation-set training-set size ratioIsabelle GuyonAT&T Bell Laboratories, Berkeley, Californiaisabelle@research.att.comAbstractWe address the problem of determining what fraction of the training set should be reservedas development test set or validation set. We determine that the ratio of the validation set sizeover the training set size scales like the square root of two complexity parameters: the com-plexity of the second level of inference (minimizing the validation error) over the complexityof the �rst level of inference (minimizing the error rate on the training set).Keywords: Cross-validation; Learning Theory; Statistics; Machine Learning; Pattern Recog-nition; Training Set; Validation Set; Test Set; Experiment Design.IntroductionThe problem often arises when organizing benchmarks in pattern recognition to determine whatsize test set will give statistically signi�cant results.In a companion paper [1], we tackled the problem from the point of view of the benchmarkorganizer: From a corpus of available data, how much data should be reserved for the benchmarktest set?In this paper, we tackle the problem from the point of view of benchmark participants. Thebenchmark participants do not have access to the benchmark test set until the �nal test. Duringthe development period, it is common practice that benchmark participants reserve part of thetraining data to test and compare various systems. Such a subset of the training data is usuallycalled development test set or validation set. The problem we address here is: how much data shouldbe reserved for the validation set? The optimum tradeo� between having more data to train andmore data to validate must be found.Cross-validation is a method of \model selection" which has be widely studied and criticized.Foundational papers include [2, 3, 4] and recent contributions include [5, 6]. In this paper, ouremphasis is on exhibiting a simple and general scaling law which can guide experimentalists inpattern recognition: the ratio of the validation set size over the training set size scales like thesquare root of the complexity of the second level of inference (minimizing the validation error) overthe complexity of the �rst level of inference (minimizing the error rate on the training set).Our result is easy to remember, it does not require refering a complicated formula or worse toan abacus. It does not contain parameters that are impossible to calculate (we shall explain how toempirically obtain the complexity parameters). We make only a few simplifying hypotheses (large1



number of examples, small error rates) and we discuss how the solution is altered if alternativehypotheses are made. Our hypotheses do not include assumptions on the nature of the targetfunction, noise level, nature and structure of hypothesis space and learning algorithm.The problem of determining the size of the benchmark test set can be solved with classicalstatistics. In contrast, the problem of determining the size of the validation set involves the com-plexity of the learning process and the theory of uniform convergence [7]. Our derivation methodfollows similar lines as found in reference [5]: we bound the probability of error of the recognizerselected by cross-validation using both classical bounds and VC-bounds [7]; we optimize the re-sulting bound for the training-validation split. Similarly also, we exhibit two \tradeo� terms" thebalance of which decides of the optimum. In spite of the similarity of the method, the di�erence inthe set of hypotheses made and in the de�nition of the \tradeo� terms" yield a di�erent frameworkto describe the problem and a di�erent solution.In reference [6], the authors seek the best training/validation split for a speci�c problem: pre-venting overtraining of neural networks. They �nd that the fraction of patterns reserved for thevalidation set should be inversely proportional to the square root of the number of free adjustableparameters. Our result generalizes and con�rms their result.1 Problem Statement and NotationsWe call t the total size of the training database. We call g the fraction of t actually used fortraining during the development period, referred to as \training set". We call f = 1 � g theremaining fraction of t used as \validation set".We adopt the learning statement proposed in [7]: Training and test set patterns xk are drawnrandomly and independently from a source of patterns according to a �xed but unknown probabilitydistribution. Patterns are labeled into class categories yk according to another �xed but unknownprobability distribution P (ykjxk). By \training" recognizer i, we mean selecting, in a family ofrecognizers Hi, the recognizer which gives the smallest number of errors on the training set. Eachfamily of recognizer is characterized by its complexity hi which may or may not be related tothe VC-dimension [7], the description length [8], the number of adjustable parameters, or othermeasures of complexity.Consider a recognizer i trained with l examples. We call pi(l) its probability of error on patternsdistributed similarly to the training, validation and test patterns. We call p̂i(l) its empirical errorrate calculated on the ft examples of the validation set. We call opt the \true" best recognizer, thatis the recognizer having the smallest probability of error popt(t) when the recognizers are trainedon all t examples. We call val the recognizer selected by cross-validation (see Figure 1).We adopt the statement of cross-validation proposed [2]: Cross-validation consists in: (i) identi-fying among N families of recognizers Hi, the family Hval whose recognizer val has smallest numberof errors on the ft examples of the validation set, when all recognizers are trained on the remaininggt examples, and (ii) training a new recognizer with all t examples (training set plus validation set)in the family Hval. Step (ii) of our statement is often omitted by other others, but it has impor-tant implications in our derivation and it makes sense from the practical standpoint of benchmarkparticipants.Note that opt is �xed once the training data is given, whereas val is a function of the train-ing/validation split. Our notation is elliptic since it does not precise val(f). We omit the f for2



notation simplicity, but we want to emphasize that if �gure 1-a, the dashed curve is the learningcurve of val(1 � ga) and in �gure 1-b, it is the learning curve of val(1 � gb).Testing consists of calculating the number of errors on an independent test set, distinct fromthe training set and the validation set. To lift any remaining ambiguity, we refer to such set as\benchmark test set".
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(a) (b)Figure 1. Learning curves. Recognizer val is the recognizer chosen by cross-validation by using gttraining examples and (1 � g)t validation examples. It has the smallest error rate on the validation set(point circled by a dashed line). Recognizer opt has the smallest probability of error when trained onall t examples (point circled by a full line). We want to avoid the situation p̂val(gt) < p̂opt(gt) and yetpval(t) > popt(t). This can arise in two limit case: (a) If g is too small, g = ga, the validation set is largeenough that the empirical error rates are very close to their mathematical expectations (p̂val(gat) ' pval(gat)and p̂opt(gat) ' popt(gat)), but the learning curves may cross and it is possible that pval(gat) < popt(gat)while pval(t) > popt(t). The \learning curve" term dominates. (2) If g is too large, g = gb, the validation setis too small and pval(gbt) and popt(gbt) are not estimated with enough precision from their empirical values.It is possible that p̂val(gbt) < p̂opt(gbt) while pval(gbt) > popt(gbt). The \uncertainty term" dominates.2 Result and proof sketchWe are going to show that the ratio f�=g� of the optimum number of examples reserved for validationover the corresponding number of examples reserved for training is proportional to the square rootof the ratio of two \complexity" parameters: the logarithm of the number of families of recognizersconsidered, lnN , and the largest complexity parameter of all those families, hmax. The denominatorhmax is the complexity of the \�rst level" of inference, based on selecting the recognizer with smallesttraining error. The numerator lnN is the complexity of the \second level" of inference, consistingin choosing among all recognizers trained at the �rst level the one with smallest validation error.To reach this result, we shall make a number of simplifying hypotheses, including that the sizeof the training database t is very large and that the error rate is very small. A discussion of thehypotheses is reported in section 4.To obtain f� we want to minimize the di�erence in performance between the recognizer valselected by cross-validation and the recognizer opt, that is we want to minimize pval(t) � popt(t).3



We rewrite this di�erence as the sum of 3 terms:term 1 term 2 term 3pval(t)� popt(t) = [pval(t)� pval(gt)] + [pval(gt)� popt(gt)] + [popt(gt)� popt(t)] . (1)Similarly as in reference [5], we will �nd upper bounds for each term; we obtain our predictionfor f� by minimizing the resulting upper bound. The tradeo� arises from the competition of twoterms: term 3, the \learning curve" term, and term 2, the \uncertainty" term (see Figure 1 and2). Term 1 is always negative and will be dropped.3 Proof3.1 Learning curve termFirst we address the problem of �nding bounds for pval(t) � pval(gt) and popt(gt) � popt(t). Weobtain these di�erences from \learning curves" which predict the probability of error as a functionof the number of training examples (see Figure 1). Several authors [9, 7, 10, 5] have proposed andjusti�ed theoretically and experimentally learning curves of the type:pi(l) = p1i +  hil !� ; (2)where l is the number of training examples and where 0:5 � � � 1. The complexity parameter hican be determined experimentally by curve �tting [10].These learning curves are assymptotically valid for large values of the training set size l. Theypredict the expected value of the error rate for all samples of size l. For small samples, there is somevariance for the particular set of patterns that was drawn. We neglect that variance in this analysisby assuming that l is su�ciently large in the region of interest and we assume that the learningcurve describes pi(l) for a particular sequence of patterns. We make the additional simplifyingassumption that � = 1. This last assumption is valid if the training error rate is vanishingly small(\learnable rule"). See section 4 for a discussion of these hypotheses.Let us consider the particular recognizer val(1� g) obtained with a training set of gt examplesand a validation set of ft = (1 � g)t examples. Let us follow the learning curve of that particularrecognizer as a function of l. From Equation 2, we have:term 1: pval(t)� pval(gt) = hval(1t � 1gt) = �fg hvalt � 0 ; (3)Term 1 is always negative or null. Therefore, we bound it by zero and drop it.From Equation 2, we also have:term 3: popt(gt)� popt(t) = hopt( 1gt � 1t ) = fg hoptt : (4)Term 3 is a function of hopt. Since recognizer opt is unknown, we bound hopt by hmax, themaximum complexity of the family of classi�ers considered here:term 3: popt(gt)� popt(t) � fg hmaxt : (5)4



3.2 Uncertainty termSecond, we address the problem of �nding a bound for pval(gt) � popt(gt). We can decompose itinto:term 2 term 2a term 2b term 2cpval(gt)� popt(gt) = [pval(gt)� p̂val(gt)] + [p̂val(gt)� p̂opt(gt)] + [p̂opt(gt)� popt(gt)] , (6)where the hat designates the empirical error rate calculated on the ft examples of the validationset.By de�nition of the cross-validation procedure, p̂val(gt) � p̂opt(gt) and therefore term 2b is anegative term. Thus we can write:term 2 term 2a term 2cpval(gt)� popt(gt) � [pval(gt)� p̂val(gt)] + [p̂opt(gt)� popt(gt)] . (7)The error rate p̂i calculated on a test set of size n, for a particular recognizer i, converges tothe probability of error pi, according to the law of large numbers. With probability (1 � �):jpi � p̂ij � "(n; �) : (8)Since opt is a particular unknown but \�xed" recognizer (not determined from data), inequal-ity (8) applies to opt: term2c : p̂opt � popt � "(n; �) : (9)Recognizer val is determined from the validation set itself and therefore inequality (8) is notdirectly applicable to it. We shall bound the deviation jpval� p̂valj by the largest deviation supi jpi�p̂ij. From inequality (8): Probafjpi � p̂ij > "(n; �)g < � : (10)Therefore, for N recognizers:Probafsupi jpi � p̂ij > "(n; �)g < NXi=1 Probafjpi � p̂ij > "(n; �)g < N� : (11)Substituting � by �=N , we obtain:Probafsupi jpi � p̂ij > "(n; �=N)g < � : (12)Therefore, with probability (1� �):supi jpi � p̂ij � "(n; �=N) ; (13)hence: term2a : pval � p̂val � "(n; �=N) : (14)Note that this derivation is typical of the VC theory [7].From inequalities (7), (9) and (14), and replacing the number of test examples n by the size ofthe validation set ft, we obtain: 5



term 2 term 2a term 2cpval(gt)� popt(gt) � "(ft; �=N) + "(ft; �) . (15)Various values of "(n; �) have been proposed in the literature. According to Cherno�'s bound [11],and using the hypothesis that the error rate p̂i is small, the following value of "(n; �) is valid:"(n; �) = C ln(1=�)n (16)where C is a small constant, C � 1:5. For a discussion of this bound, see section 4.With this value of "(n; �), we obtain from Equation (15):term2 : pval(gt)� popt(gt) � C ln(N=�2)ft (17)
af

1−f
b
f

1 f

learning

cu
rve

te
rm

term

uncertainty

u(f)

0 f*Figure 2. Validation set size tradeo�. Two terms are competing: the \learning curve" term tends toincrease the training set size (at the expense of the validation set size), whereas the \uncertainty" termtends to increase the validation set size.3.3 ResultWe have bounded all the terms of Equation (1). By using the bounds of term 1 (zero), term 2(inequality 17) and term 3 (inequality 5), we obtain:pval(t)� popt(t) � hmaxt fg + C ln(N=�2)t 1f : (18)The bound is a function u(f) of the form (Figure 2):\learning curve" term \uncertainty" termu(f)= a f1�f + bf , (19)6



N : Number of families of recognizers considered (e.g. N = 10).�: Risk of being wrong (e.g. � = 0:05).C : Constant of Cherno� bound (e.g. C = 1:5).hmax: Largest complexity of the families of recognizers considered (e.g. hmax = 100).t: Total size of the training database (e.g. t = 100; 000 examples).f�: Fraction of t that should be reserved for validation.g�: Fraction of t that should be reserved for training. (a)f�g� = sC ln(N=�2)hmax (b)Table 1. Summary of the steps taken to determine the validation set size: (a) Notations andtypical values of the parameters. (b) Ratio of the number validation examples over the number of trainingexamples that minimizes a bound on di�erence pval � popt.wherea = hmaxt (20)b = C ln(N=�2)t (21)(22)If the proposed bound is tight, the minimum of the curve u(f) informs us on the optimumtraining-validation split. The derivative of u(f) with respect to f is:u0(f) = a(1 � f)2 � bf2 : (23)The derivative is null for particular values f� and g� of f and g such that:f�g� = s ba : (24)By replacing a and b by their values, we obtain the result of Table 1.Alternatively: f� = A1 + A ; (25)where A = f�=g� given by Table 1. Note that fo A� 1, f� ' A.Numerical applicationLet us consider a few typical values of the parameters: 95% con�dence level (� = 0:05) and C = 1:5.In Table 2, we give the values of f� obtained for various values of hmax and the number N ofrecognizers involved in the cross-validation procedure.7



hmax N 1 5 10 50 1001 0.75 0.77 0.78 0.79 0.805 0.57 0.60 0.61 0.63 0.6410 0.49 0.52 0.53 0.55 0.5650 0.30 0.32 0.33 0.35 0.36100 0.23 0.25 0.26 0.28 0.29500 0.12 0.13 0.14 0.15 0.151000 0.09 0.10 0.10 0.11 0.115000 0.04 0.05 0.05 0.05 0.05Table 2. Values of f� when hmax and N vary, for C = 1:5 and � = 0:05.We notice that in the degenerate case N = 1, our method does not predict f� = 0, which wouldbe the logical answer. In this case pval(t) � popt(t) � 0 for all f , because there is only a singlerecognizer. Any value of f� works. If the term � ln�2 is ignored, we satisfy f� = 0 when N = 1.Doing so does not dramatically change the other values and yet simpli�es further the formula.The value of hmax may be estimated from previous experiments, by �tting empirical learningcurves with Equation (2), according to the method proposed in Reference [10]. hmax ' F=3,where F is the number of free parameters, is a rule of thumb for neural networks trained with\back-propagation" using \early stopping".4 Discussion of the hypotheses4.1 Learning curve termSample average and con�dence interval.Throughout the paper, we have considered only one particular split into training and validationset for each value of f . The Equality in Equation (2), which implies that pi(l) represents an averageover all samples of size l, should be replaced by and inequality involving an error bar (or con�denceinterval).The VC-theory [7] provides us with such con�dence intervals. With probability (1 � �),jpi(l) � ~pi(l)j < 2"(l; hi ; �) ; (26)where ~pi(l) is the training error rate calculated on l examples and hi is the VC dimension, aparticular measure of complexity of the family of recognizers Hi. A complete formula for "(l; hi; �)is given in Reference [7], page 157. Let us call "0(l; hi ; �) the quantity:"0(l; hi; �) = hi[ln(2l=hi) + 1] � ln(�=10)l : (27)For small values of the training error, ~pi(l), " ' "0 whereas, for large values of ~pi(l), " ' p"0. Forthe purpose of making qualitative statements, the behaviour of the bound in between these twolinit case can be approximated by a power law: " ' ("0)�, with 0:5 � � � 1. The learning curves8



of Equation (2) can be connected to the VC-bound by making the following simpli�cations:(i) For large values of l, pi(l) and ~pi(l) reach the assymptote p1i symmetrically. The bound is splitinto: p1i � ~pi(l) < "(l; hi ; �) and pi(l) � p1i < "(l; hi ; �). This last bound is the learning curve ofinterest to us.(ii) ln(2l=hi) + 1 ' 1. Keeping the log factor is a re�nement that would considerably complicatethe solution but would not change the result qualitatively.(iii) ln(�=10)� hi. Dropping the term ln(�=10) is clearly justi�ed for typical values of hi (hi > 100)and � (� = 0:05).Value of the exponent.Solving for f� by keeping the general exponent � (0:5 � � � 1) in Equation (2) does not yielda simple and elegant solution. The exponent � = 1 chosen in our calculations corresponds to the\learnable rule" case, that is the case of a vanishingly small training error. A large fraction ofpattern recognition problems closely ful�ll this requirement. When our hypothesis is violated, wecan qualitatively understand the e�ect of a smaller exponent � by looking at Figure 2. For typicalvalues of a = hmax=t � 1=30, af=(1�f) < 1 for the most part of the curve. Therefore, (af=(1�f))�will be above af=(1�f) near the minimum. This will tend to decrease the value of f�. Therefore, ifour \learnable rule" hypothesis is violated, the value of f� proposed in Table 1 is an over-estimate.4.2 Uncertainty termCherno� bounds.According to Cherno� [11], The following bounds are valid with probability (1 � �):pi � p̂i � p�2 ln�rpn ; (28)pi � p̂i � �p�3 ln �rpn : (29)where p̂i is a test error rate calculated on n examples.Let us call "0(n; �) the quantity: "0(n; �) = ln(1=�)n : (30)For large values of pi, pi ' 1, the bounds (29) simplify to: pi � p̂i � p2"0 and pi � p̂i � �p3"0.More re�ned bounds can be obtained from (29) by solving a second degree equation (as explainedin Reference [7], page 148). For instance, the right side bound obtained is:pi � p̂i � ln�n 0@1 +s1 + 2np̂i� ln�1A : (31)For small values of p̂i, these bounds simplify to: pi � p̂i � "0 and pi � p̂i � �32"0.For the purpose of making qualitative statements, we replace all these bounds by a simple powerlaw jpi � p̂ij � (C"0)�, where C is a constant and 0:5 � � � 1.Value of the exponent.In equation (16), we chose � = 1 and C � 1:5 to simplify our calculations. This hypothesiscoresponds to a p̂i vanishingly small. Applied to i = opt and i = val, this means that the error on9



the validation set of the recognizer opt and of the recognizer val should be close to zero (\learnablerule" at the second level of inference). This simplifying hypothesis may be quite often violated.The e�ect of a smaller exponent than � = 1 on the \uncertainty" term can be qualitativelyunderstood from Figure 2. For typical values of b (b = C ln(N=�2)=t � 1=100), b=f < 1 for themost part of the curve. Therefore, (b=f)� will be above (b=f) near the minimum. This will tendto increase the value of f�. Therefore, if our hypothesis of small error rate on the validation set isviolated, the value of f� proposed in Table 1 is an under-estimate.5 ConclusionWe derived a formula for splitting the training database into training set and validation set validfor large training databases and small error rates.If we call N is the number families of recognizers, hmax the largest complexity of those families,f the validation set size and g the training set size, the ratio f=g scales like qlnN=hmax. Forinstance, for N = 10, if hmax = 100, 25% of the training data should be reserved for validationwhereas if hmax = 1000, only 10% is su�cient.Although this framework is not perfect and makes some simplifying assumptions, it sheds somelight on the tradeo� between training set size and validation set size. The training set servesto determine the recognizers parameters (�rst level of inference) and the validation set serves toselect which family of recognizers performes best (second level of inference). We �nd that optimumtraining-validation split is monitored by the ratio of the complexity of these two levels of inference.This work was originally motivated by the organization of the UNIPEN benchmark [12]. Thesimplicity of our result should appeal to the experimentalists involved in the benchmark and toothers.AcknowledgementsWe are very grateful to Vladimir Vapnik for his guidance and to Michael Kearns for communicatingto us his work prior to publication and providing us with helpful comments on our draft.References[1] I. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik. What size test set gives good error rateestimates? AT&T Bell Labs memorandum BL0115540-951206-07, submitted to PAMI, 1995.[2] W. H. Highleyman. The design and analysis of pattern recognition experiments. The Bellsystems technical journal, pages 723{744, March 1962.[3] M. Stone. Cross-validatory choice ans assessment of statistical predictions. Journal of theRoyal Statistical Society B, 36:111{147, 1974.[4] M. Stone. Asymptotics for and against cross-validation. Biometrica, 64(1):29{35, 1977.[5] M. Kearns. A bound on the error of cross validation using the approximation and estima-tion rates, with consequences for the training-test split. In Advances in Neural InformationProcessing Systems 7 (NIPS 95), 1996, to appear.10
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