I considered measuring semantic similarity using findings in PhD of Alexander Budanitsky. Here is a brief introduction -- Budanitsky, Alexander and Hirst, Graeme, Evaluating WordNet-based Measures of Lexical Semantic Relatedness (<a href="http://dl.acm.org/citation.cfm?id=1168108">dl.acm.org/citation.cfm?id=1168108</a>).<br>
<br><br>Am Sonntag, 6. Oktober 2013 schrieb Michele Filannino <<a href="mailto:michele.filannino@cs.manchester.ac.uk">michele.filannino@cs.manchester.ac.uk</a>>:<br>> Dear Prof. Pedersen,<br>> I would also add:<br>
><br>> DISCO<br>> Web page | Demo | Paper<br>><br>> Bests,<br>> michele.<br>><br>> On Sun, Oct 6, 2013 at 4:45 PM, Ted Pedersen <<a href="mailto:tpederse@d.umn.edu">tpederse@d.umn.edu</a>> wrote:<br>
>><br>>> Greetings all,<br>>><br>>> I'm preparing a tutorial on measuring semantic similarity and<br>>> relatedness between concepts, My particular focus is on methods that<br>>> do this using ontologies or other (at least somewhat) structured<br>
>> resources (like Wikipedia, folksonomies, etc.) and that also have<br>>> freely available software associated with them (or at least a web<br>>> demo).<br>>><br>>> While it's a very interesting area, this particular tutorial won't<br>
>> include purely distributional approaches (due to time constraints), so<br>>> I'm looking for methods and software that use some sort of resource<br>>> like WordNet, Wikipedia, medical ontologies, Freebase, etc. to arrive<br>
>> at measurements of semantic similarity or relatedness between pairs of<br>>> concepts.<br>>><br>>> What follows is my current list, based not only on projects I have<br>>> heard of but have used in the not too distant past - so I guess I'm<br>
>> particularly interested in projects you have used or created yourself<br>>> (and can therefore vouch for to some extent).<br>>><br>>> Based on WordNet, provide path, depth, info content based measures,<br>
>> may include relatedness measures like lesk, vector, hso<br>>><br>>> WordNet::Similarity<br>>> <a href="http://wn-similarity.sourcforge.net">http://wn-similarity.sourcforge.net</a><br>>><br>
>> NLTK<br>>> <a href="http://nltk.org">http://nltk.org</a><br>>><br>>> ws4j<br>>> <a href="https://code.google.com/p/ws4j/">https://code.google.com/p/ws4j/</a><br>>><br>>> Based on UMLS (Unified Medical Language System), provide path, depth,<br>
>> info content measures, includes relatedness measures lesk, vector<br>>><br>>> UMLS::Similarity<br>>> <a href="http://umls-similarity.sourceforge.net">http://umls-similarity.sourceforge.net</a><br>
>><br>>> Based on (GO), provide path, depth, and info content measures<br>>><br>>> Proteinon<br>>> <a href="http://lasige.di.fc.ul.pt/webtools/proteinon/">http://lasige.di.fc.ul.pt/webtools/proteinon/</a><br>
>><br>>> I will post a summary of whatever I hear about after some period of<br>>> time. Any hints or suggestions will be very gratefully received.<br>>><br>>> Many thanks,<br>>> Ted<br>
>><br>>> --<br>>> Ted Pedersen<br>>> <a href="http://www.d.umn.edu/~tpederse">http://www.d.umn.edu/~tpederse</a><br>>><br>>> _______________________________________________<br>>> UNSUBSCRIBE from this page: <a href="http://mailman.uib.no/options/corpora">http://mailman.uib.no/options/corpora</a><br>
>> Corpora mailing list<br>>> <a href="mailto:Corpora@uib.no">Corpora@uib.no</a><br>>> <a href="http://mailman.uib.no/listinfo/corpora">http://mailman.uib.no/listinfo/corpora</a><br>><br>><br>><br>
> --<br>> Michele Filannino<br>><br>> CDT PhD student in Computer Science<br>> Room IT301 - IT Building<br>> The University of Manchester<br>> <a href="mailto:filannim@cs.manchester.ac.uk">filannim@cs.manchester.ac.uk</a><br>
<br>-- <br>Alexander Osherenko<br><div>Dr. rer. nat, CEO and R&D</div><div><a href="http://www.socioware.de/" target="_blank"><img src="http://www.socioware.de/images/socioware_ultrasmall.png"></a></div><br>