<div dir="ltr"><div><div><div><div>Hi ,<b><br><br>Equipe HUman Language TECHnology(HULTECH)</b><font color="#FF4500"><font size="3"> </font></font>team of GREYC - CNRS UMR 6072 Laboratory <span> </span>is happy to announce the first release of <b>TempoWordNet</b>, a lexical knowledge base to help the research in temporal domain. <br>
<br>In <b> TempoWordNet </b>, we aim to provide a better
understanding of 'time' in language, which may benefit both NLP and IR temporal studies.
It is based on WordNet 3.0 , where each synset of WordNet is automatically time-tagged with four dimensions: <b>atemporal, past, present and future.<br><br></b></div>To obtain a copy of TempoWordNet , please visit the following link:<b><br>
<br></b> <a href="https://tempowordnet.greyc.fr" target="_blank">https://tempowordnet.greyc.fr</a> <br> <br></div> OR Contact<br><br></div><b><a href="http://mohammed.hasanuzzaman@unicaen.fr/hasanuzzaman.im@gmail.com" target="_blank">mohammed.hasanuzzaman@unicaen.fr/hasanuzzaman.im@gmail.com</a></b><br>
<br></div><div>Cheers !!!<br><br></div><div>Mohammed Hasanuzzaman,<br></div><div>PhD Student, <br>Normandie University, France<br></div></div>