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Abstract

A mathematical model of working-memory capacity limits is proposed on the key assumption of mutual interference
between items in working memory. Interference is assumed to arise from overwriting of features shared by these items.
The model was fit to time-accuracy data of memory-updating tasks from four experiments using nonlinear mixed effect
(NLME) models as a framework. The model gave a good account of the data from a numerical and a spatial task ver-
sion. The performance pattern in a combination of numerical and spatial updating could be explained by variations in
the interference parameter: assuming less feature overlap between contents from different domains than between con-
tents from the same domain, the model can account for double dissociations of content domains in dual-task experi-
ments. Experiment 3 extended this idea to similarity within the verbal domain. The decline of memory accuracy with
increasing memory load was steeper with phonologically similar than with dissimilar material, although processing
speed was faster for the similar material. The model captured the similarity effects with a higher estimated interference
parameter for the similar than for the dissimilar condition. The results are difficult to explain with alternative models, in
particular models incorporating time-based decay and models assuming limited resource pools.
� 2006 Elsevier Inc. All rights reserved.
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Introduction

It is a common and sometimes annoying experi-
ence—human cognitive capacities are limited. Problem
solving is hard work and fails every so often; complex
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sentences must be read twice and still escape comprehen-
sion; logical and mathematical derivations need to be
double-checked because humans, unlike computers, are
highly error-prone calculators. We observe that some
people cope better with hard reasoning problems and
others worse, but individual variability in performance
only underscores the general fact that we all experience
severe limitations in our thinking. What is it that con-
strains our cognitive abilities?

A preliminary answer is that most complex tasks
require working memory, which has a severely limited
capacity (e.g., Carpenter, Just, & Shell, 1990; Cowan,
2005). Working memory can be characterized as a sys-
tem to remember several briefly presented items (e.g.,
ed.
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words, digits, pictures of objects, spatial locations) and
to manipulate these or other items at the same time
(Baddeley, 1986). The term capacity limit, as we under-
stand it here, refers to the observation that people’s per-
formance declines rapidly with an increase in memory
demand in a wide variety of experimental tasks. By
memory demand we mean the number of independent
items that must be held simultaneously available for
processing. The capacity limit of working memory
appears to be highly general, as evidenced by the large
amount of common variance shared between many dif-
ferent tasks (Kane et al., 2004; Oberauer, Süß, Schulze,
Wilhelm, & Wittmann, 2000). Furthermore, working
memory capacity is of central importance for complex
cognition, as shown by its strong correlation with rea-
soning ability (Engle, Tuholski, Laughlin, & Conway,
1999; Kyllonen & Christal, 1990; Süß, Oberauer, Witt-
mann, Wilhelm, & Schulze, 2002). Nonetheless, explain-
ing limited cognitive abilities with recourse to working
memory is only a preliminary answer as long as we do
not know why working memory capacity is limited.
The purpose of this article is to suggest an answer to this
question.

The capacity limit of working memory is traditional-
ly explained by limited resources. For example, Just and
Carpenter (1992) assume that working memory has a
limited pool of activation that must be shared for all
memory and processing tasks within broad content
domains (e.g., there is one resource pool for verbal tasks
and another one for spatial tasks). Similarly, Anderson,
Reder, and Lebiere (1996) attribute capacity limits to a
limited amount of source activation that must be shared
among those chunks that are held in working memory at
any time.

Resource accounts of capacity limits in human cogni-
tion have been criticized for being too unconstrained
and empirically empty (Navon, 1984). Several alterna-
tives to resource limits have been proposed to explain
the limited capacity of working memory. Several authors
have attributed forgetting from working memory to
rapid time-based decay (Baddeley, Thomson, & Buchan-
an, 1975; Barrouillet, Bernardin, & Camos, 2004; Page
& Norris, 1998; Kieras, Meyer, Mueller, & Seymour,
1999). Others have argued that the capacity limit arises
from mutual interference between representations held
in working memory (Nairne, 1990; Saito & Miyake,
2004), or that it reflects a limitation of the focus of atten-
tion to be directed to a maximum of about four chunks
(Cowan, 2001).

In a previous paper (Oberauer & Kliegl, 2001), we
formalized several alternative accounts of working mem-
ory capacity within a common framework, varying only
the critical theoretical assumptions that are specific to
each account. These models were evaluated with a par-
ticularly rich data set: all models were fit to individual
time-accuracy functions for 16 young and 17 old adults
for six levels of memory demand of a numerical memo-
ry-updating task. It turned out that only two models,
one based on decay of memory traces over time and
the other one based on interference between partially
overlapping representations, could fit the data. The
interference model (described below) was the more par-
simonious one in terms of the number of free parame-
ters, and it had a slightly better fit. The purpose of the
present paper is to present an improved version of the
interference model, to extend its domain of application
by fitting it to new data, and to test the model with
experimental manipulations assumed to affect its most
important parameter, the degree of mutual interference
between two representations.

We will apply the models to variants of the memory-
updating task, originally designed by Salthouse, Bab-
cock, and Shaw (1991). Each trial starts with the presen-
tation of a variable number of initial memory items.
Each item is set in its own frame on the computer screen
(see Fig. 1 for examples). Items are digits for the numer-
ical version and dots at particular locations within the
frames for the spatial version. Participants are required
to remember which item is displayed in which frame.
They are then required to update individual items
according to operations displayed one after another,
each in one of the frames. The operations are single-digit
additions or subtractions in the numerical version, and
arrows indicating mental shifts of the dots within their
frames in the spatial version. In the numerical example
of Fig. 1, for instance, the first updating operation
appears in the left frame. The person must retrieve the
current digit remembered for the left frame (‘‘3’’), apply
the arithmetic operation to it, and then replace the pre-
vious digit with the result (‘‘5’’) in working memory. At
the end of each trial, the final results for each frame must
be recalled. Thus, throughout the updating sequence
participants must remember one item in each frame.
The number of items to be remembered at any time
defines the memory demand (MD) of a task. In the fac-
tor-analytic study of Oberauer et al. (2000), the memory-
updating task with digits had a high loading on the ver-
bal–numerical working memory factor, whereas the spa-
tial version loaded highly on the spatial working
memory factor. Hence, the task is a valid measure of
working memory capacity.

All experiments reported here determined time-accu-
racy functions (TAFs) for individual participants and
experimental conditions. To this end, we tested each par-
ticipant on a large number of trials in each condition.
The presentation time for updating operations was var-
ied across these trials, ranging from very short times
yielding accuracies close to chance to six seconds per
operation, where accuracy reaches an asymptotic maxi-
mum level. The performance of a person in a specific
condition can then be described as a function relating
accuracy of reporting the final values to presentation



Fig. 1. Task examples for memory-updating with digits (top) and spatial positions (bottom), with a memory demand of two elements.
Thought bubbles illustrate the content of working memory after completing the first and the second updating step; in the numerical
task the just updated digit is printed in bold, and in the spatial task, the just updated dot is filled in black.
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time for individual operations (cf. Kliegl, Mayr, &
Krampe, 1994).

The remainder of this article is organized as follows:
first, we introduce our strategy of data analysis and model
fitting, nonlinear mixed effects (NLME) models. Next, we
describe an experiment measuring TAFs with the spatial
version of the memory-updating task. Then we introduce
the improved interference model and apply it to the data
of Experiment 1, as well as to the data from the parallel
numerical task version used by Oberauer and Kliegl
(2001). After that, we present two experiments with
manipulations of one critical parameter in the model, that
is, the degree of overlap between representations held in
working memory, and fit the model to these data.
Nonlinear mixed effects (NLME) models

The data from our experiments can be described with
respect to the effects of experimental conditions on the
sample mean (e.g., fixed effects of presentation time,
storage demand, and item similarity on accuracy) and
with respect to interindividual differences in these effects
(i.e., so-called random effects). The adequate method of
analysis and modeling for this kind of data is multi-level
regression. Moreover, time-accuracy curves are known
to be nonlinear—previous studies have shown that the
increase of accuracy over processing time can be de-
scribed well by a negatively accelerated exponential func-
tion (Kliegl et al., 1994). Therefore, we used nonlinear
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mixed effects (NLME) models (Pinheiro & Bates, 2000)
as a framework for data analysis and model fitting.
NLME is a nonlinear extension of multilevel regression
models to nonlinear regression. Parameters are estimat-
ed simultaneously as fixed or random effects. Each fixed
effect translates into a parameter mean (across partici-
pants) of a linear or nonlinear regression equation. Its
associated random effect represents its variability across
individuals; it can be omitted if there is no significant
variability. Random effects are assumed to be normally
distributed with a mean of zero around their fixed
effects. Importantly, instead of estimating separate
parameters for each individual, the model estimates
the variances and covariances of those parameters
for which random effects are specified. Thus, the
number of parameters estimated is independent of the
number of participants in an experiment, and obviously
much smaller compared to fitting individual partici-
pants’ data.

Nevertheless, we can obtain ‘‘estimates’’ of random
effects for each individual (i.e., actually a prediction of
each individual’s deviation from the corresponding fixed
effect based on the estimated variances and covariances).
These random ‘‘effects’’ are called best linear unbiased
predictions (BLUPs). BLUPs differ from direct parame-
ter estimates for each individual because they take into
account the individual variance and the sample mean:
if the individual estimate is very precise, the BLUP will
not differ much from the direct estimate; if the estimate
is noisy the BLUP will shrink towards the overall esti-
mate of the corresponding fixed effect. Technically,
BLUPs are the conditional modes of the random effects,
evaluated at the conditional estimate of fixed effects
(Pinheiro & Bates, 2000). Thus, an important advantage
of NLME (e.g., compared to linear or nonlinear repeat-
ed-measures regression analyses) is that it reduces the
risk of overfitting the model to unreliable differences
between individuals.

We used NLME as a data-analysis tool by fitting
descriptive time-accuracy functions (described in the
context of Experiment 1) and as a model-fitting tool
for applying the interference model to the data. For both
purposes we used the nlme package (Pinheiro, Bates,
DebRoy, & Sarkar, 2005) as provided in the R language
and environment for statistical computing (R Develop-
ment Core Team, 2005).
Experiment 1

The goal of the first experiment was to obtain
time-accuracy functions for a spatial version of the
memory-updating task, which could be used to test the
generality of the interference model. If the model
describes the dynamics and capacity limitations of work-
ing memory in general, it should be applicable to tasks
with spatial content as well as to tasks with verbal or
numerical content.

Method

Participants

Twenty-one students from high schools in Potsdam,
Germany, participated in the experiment. Their mean
age was 18.8 years (SD = 1.28); there were 10 men and
11 women. Participants were reimbursed with 12,- DM
(about US$ 6) for each 1-h session.

Materials and procedure

A spatial version of memory updating was used. Par-
ticipants saw n frames arranged on an imaginary circle
on the screen, where n corresponded to the memory
demand (MD) and varied between one and four (in con-
dition MD 1, the frame was displayed centrally). At the
beginning of each trial a dot appeared in each frame in
one of nine possible locations within the frame. The
locations were defined by an invisible 3 · 3 grid subdi-
viding each frame. The dots appeared simultaneously
for n seconds, and participants were instructed to
remember their initial locations. After that, arrows were
presented in the middle of the frames, one at a time, to
indicate the direction for a mental update of the dot
position in the respective frame (see Fig. 1). The arrows
could be vertical, horizontal, or diagonal, and partici-
pants were required to mentally shift the dot one step
in the grid in the direction of the arrow. They were
informed that a dot would never leave its frame. After
eight mental shift operations, appearing in a clockwise
sequence through the n frames, the final positions of
all n dots were probed for recall in random order. Partic-
ipants responded using the number pad on the right of
the standard computer keyboard. The nine number keys
were mapped consistently to the nine possible locations
in a frame, and in addition little icons representing each
dot position were attached on top of the keys, covering
the numbers.

The procedure was the same as in the experiment
with numerical memory updating (Oberauer & Kliegl,
2001). There were 20 blocks for each MD condition.
Each block consisted of one trial with a fixed presenta-
tion time of 6 s per arrow, and twelve trials with presen-
tation times determined by an adaptive algorithm
described below. In total there were 260 trials for each
MD condition. Memory demand was fixed within each
block and varied over blocks in the sequence 1-4-2-3-
3-2-4-1. The first 40 trials in each condition were regard-
ed as practice and excluded from analysis. The complete
procedure required eight sessions of about one hour.

During the first four sessions we adapted presenta-
tion times for the operations in each trial using Kaern-
bach’s (1991) algorithm, that is we increased times by
a certain amount after an error and decreased times after



3 The development of R2 statistics or equivalent indicators of
goodness of fit for multilevel regression models is an active field
of research (e.g., Roberts & Monaco, 2006). For example, one
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a correct response (taking into account only the first
probed item). The proportion of the increment to the
decrement determines the accuracy level to which this
algorithm converges. We used the algorithm with three
different target accuracies (33%, 66%, and more than
66%), alternating between trials so that one of the three
targets was applied to every third trial. This way, each
participant received items in each condition with a set
of presentation times tailored to his or her ability that
covered his or her entire range between chance and
asymptotic maximum performance. After half the ses-
sions, we determined the 12 presentation times with
the highest frequency of trials and selected presentation
times for the remaining sessions such that in the end they
filled up each of these 12 time categories to a minimum
of 10 trials. TAFs were fitted to the mean accuracies of
each participant in each experimental condition across
these 12 presentation times.

Results and discussion

Data of individual participants are shown in Fig. 2,
together with fits of the interference model to be
described below.1 To present data on an aggregated level
we had to find a way of averaging the data of individual
participants. Because of the adaptive manipulation of
presentation times we could not average accuracies for
a fixed set of presentation times common to all partici-
pants. Therefore, we ordered the 12 presentation times
on which each participant was tested in each condition.
We then averaged across participants the accuracies as
well as the presentation times in each of the 12 presenta-
tion time categories. The mean accuracies are plotted as
a function of mean presentation times in Fig. 3, together
with the mean predictions of the interference model
obtained in the same way from predictions for individu-
al participants.

To summarize the data further we fitted descriptive
time-accuracy functions (TAFs) to the data of each
MD condition. We used negatively accelerated exponen-
tial functions of the form

p ¼ d þ ðc� dÞð1� expð�bðt � aÞÞÞ; ð1Þ

where d is a parameter for chance performance, c repre-
sents asymptotic performance, b is the rate of approach-
ing asymptote, and a the point in time t where accuracy
p raises above chance.2 For the present purpose, we fixed
d to 1/9, because there were nine possible spatial posi-
tions; this leaves three free parameters for each partici-
pant and condition.
1 The raw data of this and the other experiments described in
this paper can be obtained from the first author on request.

2 To constrain intercept and rate to positive values, the
equation actually fitted contained exp(a) and exp(b) in the
places of a and b, respectively.
The TAFs serve the same function here as the Gener-
al Linear Model in an analysis of variance or linear
regression, in that they provide a nonlinear descriptive
model through which we can estimate the effects of
experimental manipulations. One TAF was fitted to
each MD condition and differences between conditions
were modeled through differences in the parameters a,
b, and c. In the present experiment we tested condition
effects through linear and quadratic contrasts of the
MD variable. We evaluated the significance of these con-
trasts by introducing them first as fixed effects, then
removing them one by one and testing whether the mod-
el fit declined significantly. A contrast was removed per-
manently if its removal did not lead to a significant loss
of fit, as assessed by the Likelihood ratio test in nlme.
After testing the fixed effects, random effects were added
to the model one by one and maintained if they
improved the fit significantly. After two or three random
effects were added, we tested whether the estimated
covariances between the random effects were significant,
and if they were not, all covariances were fixed to zero to
simplify model estimation.

The best fitting descriptive TAF model resulting from
this procedure had 8 fixed effects (the three intercepts of
a, b, and c, the three linear contrasts of MD, and the
quadratic contrasts on b and c) and seven random effects
(the three intercepts, the three linear contrasts, and the
quadratic contrast on b). The overall fit of the model
was assessed by the adjusted R2 statistic:

R2
adj ¼ 1�

Pn
i¼1ðdi � d̂ iÞ2=ðn� kÞP
ðdi � �dÞ2=ðn� 1Þ

ð2Þ

where di represents the observed values, d̂ i are the pre-
dicted values, �d is the mean, n is the number of data
points, and k indicates the number of free parameters
(McElree & Dosher, 1989).3 The final model had an
R2

adj of .852.
We extracted two indicators of performance for each

participant from the descriptive TAFs. First, parameter
c from Eq. (1) reflects the asymptotic accuracy reached
when processing time is not externally limited. Second,
we computed criterion-referenced presentation times
(CPTs) relative to the asymptotes. CPTs can be derived
from Eq. (1) by setting p to c times the desired relative
criterion k and solving for t:
problem with the formula employed in this article is that the
inclusion of level-2 predictors (i.e., subject-level predictors)
could theoretically render the adjusted R2 statistic negative. We
included this statistic only for reasons of rough comparability
of these results with related earlier research and as an additional
index for the comparison of nested models involving different
level-1 predictors (i.e., item-level predictors).
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CPT ¼ aþ b ln
c� d

c

� �
� lnð1� kÞ

� �
ð3Þ

Relative CPTs represent the time a participant needs to
reach a given proportion k of his or her asymptote in a
condition. Thus, CPTs reflect processing speed condi-
tional on asymptotic accuracy. The asymptotes and
CPTs were computed for each individual and each
MD condition and then averaged within conditions.
The asymptotes derived from the descriptive models
together with those predicted by the interference model
are summarized in the upper panel of Fig. 4; the CPTs
for 80% of the asymptote are shown in the lower panel.
The data showed the same pattern as that described by
Oberauer and Kliegl (2001) for the numerical task ver-
sion: asymptotic accuracy declined with increasing MD
in an accelerated fashion, and relative CPT increased
in a roughly linear manner, although in the present data
the increase ended at MD 3. This pattern has proven to
be highly diagnostic for distinguishing between models
of capacity limits in working memory. In particular,
the accelerated decline of asymptotic accuracies over
MD, together with an increase of relative CPTs, could
not be reproduced by models assuming a constant pool
of resources and by a model explaining capacity limits
through confusion between items at recall (the ‘‘cross-
talk model’’). The best fit was provided by an interfer-
ence model. We now introduce an improved version of
that model.
The interference model

Assumptions

The central assumption of the interference model is
that items in working memory interfere with each other
through interactions of their features. Items are repre-
sented by sets of features that are activated together.
Fig. 5 illustrates the representational assumptions of
the interference model. The activated features of each
item are a relatively small subset of all features in the
system (technically speaking, they form sparse distribut-
ed representations). Because different items are repre-
sented as different patterns of activation across the
same set of features, their representations can interact
and thereby degrade each other. One such form of



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rt

io
n 

co
rr

ec
t

MD 1
MD 2
MD 3
MD 4

0 1 2 3 4 5 6

Fig. 3. Data from Experiment 1 (points) and predictions from
the interference model (lines), averaged over participants for 12
categories of presentation times. Placement of points on the x-
axis reflects mean presentation time in each category. Error bars
represent 95% confidence intervals.

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Memory Demand

A
sy

m
pt

ot
ic

 a
cc

ur
ac

y

321 4

321 4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Memory Demand

A
sy

m
pt

ot
ic

 a
cc

ur
ac

y

Estimates from Data
Estimates from Interference Model

0.
0

0.
5

1.
0

1.
5

2.
0

Memory Demand

T
im

e 
fo

r8
0%

 o
f A

sy
m

pt
ot

e 
(s

)

0.
0

0.
5

1.
0

1.
5

2.
0

Memory Demand

T
im

e 
fo

r8
0%

 o
f A

sy
m

pt
ot

e 
(s

)

Estimates from Data
Estimates from Interference Model

Fig. 4. Asymptotic accuracies (top panel) and time demands
for 80% of the asymptote (CPTs) for spatial memory updating
(Experiment 1), estimated from fits of descriptive time-accuracy
functions to the data and to the predictions of the interference
model (BLUPs). Error bars represent 95% confidence intervals.

K. Oberauer, R. Kliegl / Journal of Memory and Language 55 (2006) 601–626 607
interaction is feature overwriting (Lange & Oberauer,
2005; Nairne, 1990; Neath, 2000): if two items share a
feature, they compete for this feature, which can lead
to the loss of that feature in one of the representations.
A rationale for feature overwriting can be found in mod-
els that use synchronized firing of model neurons as a
mechanism of binding together the features that belong
to the representation of an item (Raffone & Wolters,
2001). In this kind of models, feature units representing
features that belong to the same representation fire at
the same time, whereas units belonging to different rep-
resentations fire out of synchrony. A feature unit can
belong to only one representation because it can fire in
synchrony with only one set of other feature units.4

Between any two items there is a certain degree of
feature overlap, with more similar items sharing a larger
proportion of feature units. Thus, each representation
loses a certain proportion of its feature units through
overwriting. The mean proportion of feature units
shared between any two items in a set is expressed as
parameter C. Thus, when there are two items of that
set in working memory at the same time, each one can
be expected to lose a mean proportion of C/2 of its fea-
4 It is useful to distinguish between features (e.g., phonemes in
a word, or the color of an object) and feature units (i.e., the
units in a distributed representation as illustrated in Fig. 5). If a
feature is represented by a multitude of units, overlap between
two items in that feature does not necessarily result in complete
loss of that feature in one of them, but to loss of a subset of the
feature units representing that feature in both items.
ture units.5 In general, when there are n items in working
memory at the same time, each item suffers interference
from n � 1 other items. Assuming that the proportions
of overlapping feature units of all pairs in a set of n items
are stochastically independent, the proportion of feature
units remaining for each item after the loss due to over-
writing computes as
5 Readers of Oberauer and Kliegl (2001) should be aware that
in that paper we used parameter C to represent the average
proportion of overwritten features, which we express as C/2
here, and this explains why our previous estimates for C in
young adults were about half of the present estimates.
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in two feature units (labeled 1 and 2) out of their five feature units, so that C = 2/5. Feature unit 1 is grabbed by the first item, whereas
feature unit 2 is grabbed by the second item. Therefore, each item loses one of its five units due to overwriting. Each feature unit
belonging to an item is associated with a representation of that item in the focus layer; the focus layer represents the current content of
the focus of attention in working memory. At retrieval, the retrieval cue selects the corresponding context unit, which in turn selects all
feature units in the feature layer that fire in its phase (i.e., have the same fill pattern in the figure). A gating mechanism allows these
feature units to pass on activation to the focus units to which they are connected. Because of feature loss from overwriting, only four of
the five feature units belonging to the target item can activate the correct focus unit, so that its asymptotic activation is 4/5. Due to
feature overlap, one of these feature units (unit 2) also activates one of the competing focus units, which therefore has an asymptotic
activation of 1/5. The activated focus units are used as input for computing the result. The connections from the focus units to the
result units (dotted lines) are modulated by a representation of the operation (here, ‘‘+2’’). In the example illustrated here, the target
item is activated higher than any competitor, and therefore the correct result receives the highest activation level and is selected. Due to
noise, the co-activated representation of a competitor item in the focus layer could reach the highest activation level, and as a
consequence, a wrong result unit would win the competition.
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Pri ¼ ð1� C=2Þn�1 ð4Þ

Further, we assume that the activation each item re-
ceives is distributed equally among its feature units.
The proportional feature loss due to interference there-
fore results in an equivalent loss of an item’s activation
in working memory, Ai:

Ai ¼ ð1� C=2Þn�1 ð4aÞ

When items are encoded into working memory, they be-
come bound to specific context representations by which
they can be retrieved. In serial recall, for example, each
item is often assumed to be linked to a segment on a
temporal or positional context representation (for mod-
els along this line see, e.g., Brown, Preece, & Hulme,
2000; Burgess & Hitch, 1999). In a task such as memory
updating, it is plausible to assume that items are bound
to representations of their frames on the screen. In a
model using synchrony of firing as a binding mecha-
nism, feature units belonging to an item fire in synchro-
ny not only with each other but also with the context
they are bound to.

When an item is to be retrieved, it is cued by its
frame. The representation of that context serves to select
the features currently bound to it as input for the updat-
ing operation (or for the final recall operation). One pos-
sibility for implementing the cued retrieval of an item
from working memory is to let the feature units of the
cued item activate a representation of that item in the
focus of attention (Oberauer, 2002). Hence, retrieval of
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an item from working memory is the gradual activation
of a representation of that item in the focus layer (see
Fig. 5). The asymptotic activation that can be reached
for a representation in the focus is determined by the
sum of the activation of the feature units that provide
input to it. The activation is then passed on from the
focus representation to a representation of the result of
the updating operation. The gradual activation of the
target item i in the focus of attention can be described
by a negatively accelerated function (McClelland, 1979):

ai ¼ Aið1� expð�trÞÞ ð5Þ

where ai is the activation of the target item in the focus
layer, Ai is the activation of that item in the feature layer
(acting as an asymptote of ai), t is the time since begin-
ning of the retrieval process, and r is the rate of activa-
tion. Inserting Eq. (4a) for Ai we obtain:

ai ¼ ð1� C=2Þn�1ð1� expð�trÞÞ ð5aÞ

Due to the partial overlap of items the cue not only acti-
vates the associated target item, but also partially acti-
vates competing items in the focus layer. Each
competitor is activated by those features of the target
that are shared with the competitor and are bound to
the target and its cue, so that they are selected for being
forwarded to the focus layer. In Fig. 5, feature units 1
and 2 are shared between the target item and the com-
petitor, but only feature unit 2 sends activation to the fo-
cus layer, because unit 1 has been grabbed by the
competitor. Therefore, feature unit 2 contributes to acti-
vation of the competitor in the focus layer. In general,
each competitor will have grabbed away C/2 of the C

feature units it shares with the target. Of the remaining
C/2, other competitors (if there are any in working
memory) are expected to grab away a proportion of
C/2. The proportion of feature units of the target that
are shared with any competitor and remain bound to
the target can, therefore, be expressed as C/2 times
(1 � C/2)(n�2) for n > 1. The activation equation for
competitor items therefore becomes:

aj ¼ ðC=2Þð1� C=2Þn�2ð1� expð�trÞÞ ð6Þ

The focus of attention selects only one item at a time for
processing (Oberauer, 2002), the one receiving the high-
est activation input. The probability that among n items
in working memory the target item i forwards the high-
est activation to the focus layer can be expressed by the
Boltzmann equation (Anderson & Lebiere, 1998, p. 90) :

pi ¼
expðai=T ÞPn
j¼1 expðaj=T Þ ð7Þ

In this equation, pi is the probability that the activation
of a target item i, expressed as ai, is higher than the acti-
vation of all other items transmitted to the focus layer.
Parameter T reflects the noise in the system, expressed
as the ‘‘temperature’’, which is related to the standard
deviation of activation by T = sqrt(6)r/p; in the model
we treat the activation noise r as a free parameter.

Besides the other items held in working memory,
there is also competition from the remaining items in
the set of possible items, in particular during the compu-
tation of a new item from the retrieved item. There were
nine possible locations in each frame in the spatial
updating task and nine possible results in the arithmetic
updating task. We assume that all items in the set com-
pete for being generated as results of the updating oper-
ation according to their current level of activation.
Therefore, the denominator of Eq. (7) must sum over
the activation levels of nine items, which can be broken
down into three categories, the target item with activa-
tion ai, the other items currently in working memory,
which have activation aj, and the remaining items in
the set which have activation 0. Therefore, Eq. (7) can
be expanded:

pi ¼
expðai=T Þ

expðai=T Þ þ ðn� 1Þ expðaj=T Þ þ ð9� nÞ expð0=T Þ
ð8Þ

The processing model for memory updating assumes
that the cognitive system encodes all initial values with-
out errors. The first updating cycle starts with the pre-
sentation of the first updating operation in one frame.
The selected frame position is used as a retrieval cue,
and the gradual accumulation of activation for the tar-
get item i and the competitors in the focus layer begins.
This accumulation of activation proceeds until the pre-
sentation time for the operation ends. During the whole
time, the activation of i is immediately used as a contin-
uous input for a procedure that performs the updating
operation. The updating operation consists of gradually
activating a representation of the operation’s result. The
shifts in mental space (for dots) or arithmetic computa-
tions (for digits) are assumed to yield the correct result if
and only if the activation of the correct result is higher
than the activation of all competing items (i.e., the other
items in working memory and the remaining items in the
set).

Retrieval of an item and transformation of that item
according to the presented operation hence form a cas-
cade of two operations. We initially attempted to model
this cascade explicitly by distinguishing two accumulat-
ing activations (one for the retrieved item in the focus
layer, one for the result of the operation in the result
layer) driven by two rates (i.e., one for retrieval into
the focus layer, and one for producing the new item in
the result layer). That model, however, led to estimation
problems (i.e., failure to converge), which we took as
indicating that the model was overparameterized for
the present data. Therefore, we simplified the model by
collapsing the two processes into one. The gradual
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activation of the target item i by rate r therefore repre-
sents the joint process of retrieving the target item into
the focus of attention, and of activating the result of
the updating operation. Likewise, the gradual activation
of competing items j reflects the joint activation of other
items currently in working memory and the activation of
competing operation results, possibly arising from these
items.

We assume for simplicity that the probabilities of
succeeding with each updating step are independent.
The probability to recall an item correctly at the end
of a trial, therefore, is the product of the probabilities
of successful individual updating operations on that
item, times the probability that retrieval succeeds in
response to the item’s final probing. In the absence of
any useful memory, participants are still forced to select
one of nine response alternatives, therefore we set
chance performance to 1/9. We can estimate accuracy
in recalling each item i as:

P i ¼ 1=9þ ð1� 1=9Þpm
i p0i; ð9Þ

with m expressing the number of updating operations
applied to item i, pi the probability of a single successful
updating step, and Pi the probability of recalling the cor-
rect item in frame i at the end of a trial. The probability
to succeed in the final retrieval, denoted p0i, is computed
just like pi, but with processing time t set to infinity, be-
cause there was no time limit for retrieval. In the exper-
iments reported here, m depends on the memory demand
condition, because the total number of updating opera-
tions was held constant for each trial, so that with
increasing MD, each individual item became updated
less often (e.g., with a total of eight operations, m = 4
for MD 2 and m = 2 for MD 4).

One further feature of the model needs to be intro-
duced: the fusion of two cascaded processes (retrieval
and the updating operation) into one is most likely
unproblematic for MDs larger than one. Two exponen-
tial accumulation processes in cascade would give rise to
a cumulative Gamma function (McClelland, 1979),
whereas we merge them into a single process modeled
as an exponential function. The two functions differ only
in their early sections, that is, at the shortest presenta-
tion times, for which the present data are relatively
scarce and unreliable, so that there is no realistic chance
for distinguishing between the two functions. Our sim-
plification could be problematic, however, for MD 1,
because it glosses over a difference in task demands
between MD 1 and higher demands. With a MD of 1,
each operation can be immediately applied to the result
of the previous one, so that the input to the operation
does not have to be retrieved before being manipulated.
With higher MDs, each operation involves a switch to
another frame, so that the new frame’s content must
be retrieved before it can be operated on. Several exper-
iments with self-paced versions of the memory-updating
task (Garavan, 1998; Oberauer, 2002, 2003) have shown
that switching from one object in working memory to
another is associated with substantial time costs, com-
pared to operations that can be applied directly to the
result of the previous operation. These switch costs
can be interpreted as the time for retrieving a new item
from working memory into the focus of attention. In
the present context, this means that conditions with
MDs larger than 1 would involve a retrieval step before
the operation proper, whereas the MD 1 condition
would not involve such a step. To capture this difference,
we allowed different rate parameters for MD 1 (denoted
r1) and for higher MDs (simply denoted r) in all applica-
tions of the interference model.

To summarize, the interference model has four free
parameters: the interference parameter C, the two rate
parameters r and r1 and the standard deviation of acti-
vation, r. These parameters can vary between people
or between tasks and experimental conditions, or both.
Variations of parameters over tasks reflect task charac-
teristics. For example, C reflects the mean degree of
feature overlap of the task’s items; it can then be inter-
preted as a proxy for inter-item similarity in the task.
Likewise, the rate parameter r reflects the typical speed
of an updating operation as required in the task. Varia-
tion of parameter means over conditions in an experi-
ment reflects the effect of the manipulation on the
parameter. Variation over persons, on the other hand,
reflects individual differences. Model parameters with
individual differences can be thought of as theoretically
meaningful latent variables that explain individual
differences in observed variables (i.e., measured perfor-
mance). The rate parameter r, for instance, can be inter-
preted as an indicator of a person’s processing speed, r
reflects the level of noise in a person’s working memory
system, and C can be interpreted as the person’s suscep-
tibility to interference. Within the NLME framework,
both dimensions of variation are taken into account:
variation over experimental condition is captured by
fixed effects, and variation over persons is captured by
random effects.

Application to the spatial memory updating data

(Experiment 1)

We fitted the model to the data with NLME, pro-
gressing through a series of models with increasingly
relaxed constraints on individual differences in model
parameters (i.e., allowing more parameters to have ran-
dom effects) up to a point where no further increase of fit
could be achieved. The model fit was assessed by the log-
Likelihood statistic returned by the NLME algorithm
(higher log-Likelihoods represent better fits), the Akaike
Information Criterion (AIC), the Bayesian Information
Criterion (BIC), and the adjusted R2 statistic. The AIC
and BIC are derived from log-Likelihood, penalizing



Table 1
Model fits for spatial memory updating (Experiment 1)

Nr Fixed effects Random effects Par AIC BIC log-Lik R2
adj Sign

0 C, r, r C 5 �1269 �1244 639.3 0.713
1 C, r, r1, r C 6 �1387 �1358 700.0 0.747 0
1a C, r, r1, r2, r C 7 �1427 �1393 720.6 0.757 1
2 C, r, r1, r C, r 8 �1483 �1444 749.7 0.785 1
3 C, r, r1, r C, r 8 �1469 �1430 742.6 0.782 1
4 C, r, r1, r C, r, r1 11 �1589 �1535 805.3 0.823 3
5 C, r, r1, r C, r, r1, r 15 �1607 �1533 818.6 0.831 4
5a C, r, r1, r2, r C, r, r1, r 16 �1639 �1560 835.6 0.836 5

Legend: Par, number of free parameters; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; log-Lik, log-
Likelihood; Sign, model fit is significantly better than the nested model with the number in this column.
Note. Estimates are based on 999 data points.
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for the number of free parameters, and therefore are rec-
ommended for comparing model fits while taking parsi-
mony into account (lower values of AIC and BIC, i.e.,
higher absolute values, indicate a better fit).6 When
two models with the same fixed effects are nested (i.e.,
one can be derived from the other by dropping a subset
of the random effects), the model fits can be compared
by a test of whether the less parsimonious model had a
significantly better fit than the more constrained model.
We used this last criterion, where possible, and AIC and
BIC otherwise, to determine which model version pre-
sents the best compromise between fit and parsimony.
The fit statistics of the model versions tested are summa-
rized in Table 1.

Besides the theoretically motivated versions we also
tested two exploratory model versions that introduce a
difference in the rate parameter between MD 2 and the
two higher levels of MD. These model versions (1a
and 5a) have three different rate parameters, r1, r2, and
r (for MD > 2). The theoretical model does not provide
any rationale for assuming different rates for MD levels
larger than one, but it does not exclude them either. The
purpose of investigating these models is to test whether
processing rates in the MD range from two to four are
actually constant. If this were the case, it would suggest
a qualitative difference between processing at MD 1 and
processing at higher MD levels. A qualitative difference
in processing rates would be strong support for the
assumption that with MD 1 each item to be updated is
already in the focus of attention and, therefore, can be
processed immediately, whereas with higher MD levels,
a retrieval step must precede processing. A similar ratio-
nale underlies the argument for a focus of attention put
forward by McElree and Dosher (1989), who investigat-
6 Readers might wonder why our log-Likelihoods are
positive. This is because with continuous distributions log-
Likelihood is the logarithm of a probability density, which can
be larger than 1. As a consequence, AIC and BIC, which are
defined as �2 log(Likelihood) plus a penalty term, are negative.
ed speed-accuracy function—partially analogous to our
time-accuracy functions—for the Sternberg recognition
task. It turned out that with the present data a model
with different processing rates for MD 2 and MD > 2
yielded a small but significant improvement of fit. There-
fore, there was no evidence for a qualitative difference in
processing dynamics between MD 1 and higher MD lev-
els. This finding does not contradict the idea of a focus
of attention in working memory, but does not support
it either. To anticipate a result from the next data set,
no evidence for an increase in rate from MD 2 to 4
was found with the numerical memory updating data,
thereby lending some support to a qualitative difference
between MD 1 and higher levels of MD.

Among the theoretically motivated models, version 5
provided the best fit. The parameter estimates of that
model are summarized in Table 2; the first row presents
the sample means (i.e., fixed effects), the second row
their standard deviations (i.e., random effects), and the
third to last row their correlations. Standard deviations
and correlations are estimated parameters of the NLME
model in which the interference model is embedded.

The fitted model yielded predictions for the perfor-
mance of individual participants (BLUPs), which are
plotted together with the data in Fig. 2. The averaged
predictions are plotted alongside the data in Fig. 3.
We modeled the predicted data by descriptive TAFs
(Eqs. (1) and (3)) in the same way as the empirical data
to obtain model predictions for asymptotic accuracies
and CPTs for each participant; these predictions are
plotted with the corresponding empirical results in
Fig. 4. The model reproduced the qualitative trends in
the data well, with an accelerated decline of asymptotic
accuracy and an approximately linear increase of CPT
with increasing levels of MD up to 3.

Remodeling the numerical memory-updating data

Next, we tested whether the modified interference
model still fits the original data from numerical memory



Table 2
Parameter estimates of interference model (Version 5) for spatial memory updating (Experiment 1)

C r r1 � r r

Mean 0.39 [0.36, 0.43] 1.40 [1.19, 1.60] 0.44 [0.25, 0.63] 0.15 [0.14, 0.16]
Standard deviation 0.071 [0.05, 0.11] 0.447 [0.31, 0.64] 0.386 [0.26, 0.57] 0.022 [0.01, 0.03]
C 0.12 [�0.34, 0.53] �0.13 [�0.60, 0.40] �0.04 [�0.51, 0.45]
r �0.78 [�0.95, �0.27] 0.57 [0.11, 0.83]
r1 � r �0.16 [�0.65, 0.42]

Note: The top two rows of the table contain estimates for the parameter means and their standard deviations in the participant sample;
the bottom part of the table contains estimates for the parameter correlations across participants. Approximate 95% confidence
intervals computed by the nlme package are given in brackets. Instead of estimating r1 directly, NLME estimates the slope of r from
MD > 1 to MD1, which is given here as r1 � r; r1 can be obtained by adding this slope to r.
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updating (Oberauer & Kliegl, 2001). The data were time
accuracy data from 18 young adults who worked on a
numerical updating task with MDs from one to four.7

Descriptive TAFs were fit to the data in the same way
as in Experiment 1 (R2

adj ¼ :888). There were significant
fixed effects for the three intercepts, the three linear con-
trasts, and the quadratic contrasts on a and b; random
effects were significant for the three intercepts, and the
linear and quadratic contrasts on a and b. The signifi-
cant effects are plotted in Fig. 6. The downward acceler-
ated decline of asymptotes with MD is not apparent in
these data (i.e., the quadratic contrast on c was not sig-
nificant), probably because young adults’ asymptotes
were close to ceiling up to MD 4. Old adults showed
an accelerated downward trend in asymptotes for MD
1 to 4, and young adults showed the same trend for high-
er levels of MD in the numerical updating task (Obe-
rauer & Kliegl, 2001).

We applied the set of progressively relaxed versions
of the interference models used for Experiment 1 to
the data from numerical updating; the results are sum-
marized in Tables 3 and 4. The models with more than
one random effect had all correlations constrained to
zero because freely estimating these correlations led to
no significant improvement of fit. Model version 5 pro-
vided the best fit; no further improvement could be
reached by allowing rate to increase from MD 2 to
MD > 2 (version 5a). The model fit the data well, as is
illustrated in Fig. 6. One systematic deviation from the
data was that the model overpredicted asymptotic accu-
racies at low MDs. This overprediction probably reflects
the assumption that people do not make mistakes in the
arithmetic computations; this assumption might be over-
ly optimistic.

A comparison of the parameter estimates for the
numerical task with those for the spatial task shows a
larger mean value of C, a faster processing rate r and
7 Only data from young adults and MDs up to four are
modeled here for comparability with the other data presented in
this article. This selection enabled us to include two participants
who did not complete the higher levels of MD and, therefore,
had been excluded in Oberauer and Kliegl (2001).
a larger increase of processing rate from r to r1, as well
as a higher standard deviation r for the spatial task. The
differences in parameter estimates were significant, as
Memory DemandMemory Demand

Fig. 6. Asymptotic accuracies (top panel) and time demands
for 80% of the asymptote (CPT 80) for numerical memory
updating, estimated from fits of descriptive time-accuracy
functions to the data and to the predictions of the interference
model. Error bars represent 95% confidence intervals.



Table 3
Model fits for numerical memory updating

Nr Fixed effects Random effects Par AIC BIC log-Lik R2
adj Sign

0 C, r, r C 5 �1015 �991 512.4 .775
1 C, r, r1, r C 6 �1042 �1013 527.2 .783 0
1a C, r, r1, r2, r C 7 �1045 �1012 529.5 .783 1
2 C, r, r1, r C, r 7 �1364 �1331 689.2 .860 1
3 C, r, r1, r C, r 7 �1365 �1331 689.4 .860 1
4 C, r, r1, r C, r, r1 8 �1391 �1353 703.5 .871 3
5 C, r, r1, r C, r, r1, r 9 �1403 �1360 710.4 .877 4
5a C, r, r1, r2, r C, r, r1, r 10 �1398 �1350 709.0 .875 4, not 5

Legend: Par, number of free parameters; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; log-Lik, log-
Likelihood; Sign, model fit is significantly better than the nested model with the number in this column.
Note. Estimates are based on 868 data points. Correlations between random effects were fixed to zero.

Table 4
Parameter estimates of interference model (Version 5) for numerical memory updating

C r r1 � r r

Mean 0.29 [0.27, 0.32] 0.69 [0.58, 0.81] 0.08 [0.02, 0.14] 0.12 [0.10, 0.13]
Standard deviation 0.035 [.016, .074] 0.20 [0.12, 0.36] 0.10 [0.06, 0.16] 0.022 [0.012, 0.042]

Note: The table contains estimates for the parameter means and their standard deviations in the participant sample (with approximate
95% a confidence intervals in brackets); the parameter correlations were fixed to 0. Instead of estimating r1 directly, NLME estimates
the slope of r from MD > 1 to MD 1, which is given here as r1 � r; r1 can be obtained by adding this slope to r.
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shown by the non-overlapping confidence intervals
(compare Tables 2 and 4). This means that there was
substantially more mutual interference between spatial
than between numerical items in working memory. As
a result, the decrease of asymptotic performance with
memory load was steeper in the spatial version, as was
the increase in time demand to reach 80% of the asymp-
tote (compare Figs. 4 and 6).

Discussion

The modified interference model was successfully
applied to time-accuracy data from a spatial and a
numerical version of the memory-updating task. This
result supports the notion that the same basic principles
can be used to model capacity limitations in numerical
and spatial working memory. The form of the functions
that relate memory load to time demand and asymptotic
accuracy are the same in both domains, only the
parameter values are different. In particular, the spatial
locations yielded higher interference and more noise
than the digits, and the processing rates were faster for
spatial than for numerical updating. These differences
might be due to the specific materials used here, or they
might reflect general differences between spatial and
numerical working memory. The difference in the noise
parameter r was somewhat surprising and indicates that
r is not a general parameter of the memory system, but
content dependent. One interpretation of this result is
that the noise parameter does not reflect a constant
property of the cognitive architecture, but a combina-
tion of noise intrinsic to the cognitive system and noise
arising from the representations involved in a cognitive
process. If, for instance, representations of dot positions
consist of fewer feature units than representations of
digits, then the activation levels of items in working
memory, Ai, would be expected to vary more from item
to item and from one updating step to the next in the
spatial than in the numerical task, because with fewer
feature units the actual loss of units in each instance
would have a larger variability around its mean.

The direct comparison of memory updating with num-
bers and with spatial positions yielded another interesting
observation. The time demand for a spatial shift opera-
tion was shorter than the time demand for an arithmetic
operation as long as memory demand was minimal. This
is evident in the CPTs for MD 1, which was 581 ms
(SD = 90) for the spatial task, and 891 ms (SD = 178)
for the numerical task. However, time demands showed
a steeper increase with complexity in the spatial than in
the numerical task. At MD 4, a spatial shift operation
required as much time for 80% of the asymptote
(1501 ms) as an arithmetic operation (1470 ms). The slope
of the CPTs with memory load obviously does not reflect
an increase due to a constant or proportional factor.
Instead, it is linked to the difficulty of holding several
items in working memory simultaneously, which is a func-
tion of the interference parameter. The interference model
captures this to some degree by the assumption that over-
lapping representations are partially overwritten, thus
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reducing their overall activation, so that more time is
required to raise their activation reliably above that of
the competitors.
Experiment 2

The second experiment combined the numerical and
the spatial memory-updating task to investigate inter-
ference between items from the same domain and inter-
ference between domains. One of the best established
findings in working-memory research is that dual-task
costs are much reduced when the two tasks come from
different content domains—in particular, when one of
them uses verbal (including numerical) material and
the other visuo-spatial material (Baddeley, 1986; Farm-
er, Berman, & Fletcher, 1986). These findings, together
with dissociations from neuropsychology and neuroim-
aging (eg., Smith & Jonides, 1997), have been used to
argue for separate subsystems of verbal and visuo-spa-
tial working memory. Further research has revealed
that double dissociations can also be found within both
broad domains. Impairment of memory by a concur-
rent processing task is larger when both tasks involve
words, or both involve digits, than when one involves
words and the other digits (Conlin, Gathercole, &
Adams, 2005). Dual-task costs are also smaller when
one task involves visual and the other involves spatial
information than when both involve visual, or both
involve spatial information (Klauer & Zhao, 2004).
Rather than postulating ever more separate subsystems,
an alternative explanation of these findings is by assum-
ing a single working memory system operating on var-
ious kinds of representations in different parts of the
brain (Cowan, 2005). The interference model fits well
with this alternative view. We assume that representa-
tions in different content domains share, on average,
fewer features than representations within a content
domain. In dual-task situations that require representa-
tions of both tasks to be held in working memory
simultaneously, there will be more interference through
feature overwriting when the tasks rely on representa-
tions from the same domain.

To test this idea we modeled the design of Experi-
ment 2 on the logic of dual-task experiments used to
demonstrate the double dissociation of content domains.
There were three conditions with a memory demand of
four items, one with four digits, one with four spatial
positions, and one combining two digits with two spatial
positions. If we think of each pair of items as constitut-
ing one task, these three conditions correspond to three
dual-task combinations, two within-domain combina-
tions and one cross-domain combination. In addition,
there were two conditions with MD 2, one with two dig-
its and one with two spatial positions, which can be
interpreted as the ‘‘single-task’’ control conditions.
Whereas in dual-task experiments the two tasks usually
differ in several regards, only one of which is the content
domain of the representations involved, our design
manipulates content domain (i.e., the kind of representa-
tion and the corresponding kind of operation) without
changing other task features, thereby enabling a more
controlled assessment of how the different combinations
of content domains affect performance. To our knowl-
edge, the present experiment is the first to investigate dif-
ferent combinations of contents in a working memory
task while holding constant the task paradigm.

The purpose of Experiment 2 is to test whether the
interference model can reproduce the effects of memory
demand within a domain and the effects of dual-task
combinations across domains within a common frame-
work and a small number of free parameters. We assume
three overlap parameters, Cnum, Cspat, and Cmix. The
first two parameters reflect the degree of overlap within
each domain, and the third parameter reflects the degree
of overlap across domains. In addition, we used two rate
parameters, rn and rs, for numerical and spatial updating
operations, respectively, and one noise parameter r.

Method

Participants

Participants were 10 high-school students from Pots-
dam. Their mean age was 19.1 years (SD = .88), and
four were female. They participated in 10 1-h sessions
and received 12,- DM (about US$ 6) for each session.

Design and procedure

There were five conditions. Two ‘‘single-task’’ con-
ditions involved memory-updating tasks with a MD
of two items, either digits (numerical 2) or spatial posi-
tions (spatial 2). The two frames in which the stimuli
appeared were presented adjacent to each other in the
center of the screen. As in the previous experiments,
the digits had to be updated according to eight succes-
sive arithmetic operations, and the spatial positions
were to be updated according to eight successively pre-
sented arrows. The mixed condition combined two
frames with digits and two frames with dots (mixed
4). The four frames were arranged in a 2 · 2 matrix
in the middle of the screen, with the dots displayed
in the top row and the digits in the bottom row. The
digits were updated through arithmetic operations dis-
played in the respective frames, and the dot positions
through arrows. The sequence of updating operations
again followed a clockwise order, so that two spatial
operations were followed by two arithmetic operations,
then again two spatial operations and two arithmetic
operations. The mixed condition was contrasted with
two content-homogeneous conditions of equal memory
demand, one with two rows of digits (numerical 4), and
one with two rows of dots (spatial 4).



0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

Numerical

MD 2
MD 4
Mixed

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presentation Time (s)

P
ro

po
rti

on
 c

or
re

ct

Spatial

MD 2
MD 4
Mixed

Fig. 7. Data from Experiment 2 (points) and predictions of the
interference model (lines), averaged over participants for 12
categories of presentation times. Placement of points on the x-
axis reflects mean presentation time in each category. Error bars
represent 95% confidence intervals.
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There were 18 blocks for each condition, each block
consisting of 13 trials. One trial had a fixed presentation
time of 6 s, the other presentation times were determined
by the same adaptive algorithm as in the previous exper-
iments. In the mixed condition, the same presentation
time was used for the spatial and the numerical opera-
tions. The blocks were ordered according to the
sequence spatial 2 – numerical 4 – mixed 4 – numerical
2 – spatial 4, followed by its reverse, and then repeated
until the end.

Results

The averaged accuracies as a function of presenta-
tion time, produced in the same way as for Experiment
1, are displayed in Fig. 7. We first analyzed the data by
fitting descriptive TAFs jointly to the three numerical
conditions (including the numerical accuracies from
mixed 4) and to the three spatial conditions (including
the spatial accuracies from mixed 4; combining numer-
ical and spatial conditions in a single model was not
feasible because the large number of parameters made
estimation computationally extremely costly). Within
each content domain, the intercept of each parameter
represented the MD 2 condition, and two contrasts
were defined to capture the differences between condi-
tions: the dual-task contrast represented the difference
between MD 2 and the mixed condition, that is,
dual-task costs from combining contents across
domains. The domain contrast represented the differ-
ence between the cross-domain mixed condition and
the within-domain MD 4 condition, thereby reflecting
the increase in dual-task costs when combining con-
tents from the same domain.

The best fitting model for the numerical conditions
(R2

adj ¼ :854) had fixed effects for the intercepts on a,
b, and c, and for both contrasts on a and on c. Ran-
dom effects were significant for the intercept of b and
c, and for both contrasts on c. For the spatial condi-
tions we had to fix the a parameter to 0 because
otherwise a would have been estimated to negative
values, with the absurd implication of above-chance
performance at time 0. The best fitting model
(R2

adj ¼ :817) had fixed effects on the intercepts of b

and c, as well as the dual-task contrast on b and both
contrasts on c. All these fixed effects were associated
with significant random effects.

The asymptotes and CPTs for all conditions are
shown in Fig. 8. The significant domain contrast for
the asymptote parameter c in both content domains
reflect the typical pattern of dual-task studies: digits
could be recalled better when combined with additional
spatial material (mixed numerical) than when combined
with more digits (numerical 4). Conversely, spatial posi-
tions could be recalled better when combined with digits
(mixed spatial) than when combined with additional
spatial information (spatial 4). The significant dual-task
contrast shows that, nonetheless, combining representa-
tions from the numerical and the spatial domain in
working memory also engenders dual-task costs (for
similar findings see Morey & Cowan, 2004). The pattern
of CPTs across conditions was less clear and somewhat
clouded by the large variability in two of the spatial
conditions.

The fits of a series of progressively relaxed versions
of the interference model are summarized in Table 5.
With the small N of this study correlations cannot be
estimated reliably (see the large confidence intervals of
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Table 5
Model fits for numerical, spatial, and dual-task memory updating (E

Nr Random effects Par AIC

0 Cnum, Cspat 9 �904
1 Cnum, Cspat, Cmix 10 �999
2 Cnum, Cspat, r 10 �1037
3 Cnum, Cspat, rn, rs 11 �991
4 Cnum, Cspat, Cmix, r 11 �1055
5 Cnum, Cspat, Cmix, rn, rs, r 13 �1089

Legend: All models use Cnum, Cspat, Cmix, rn, rs, and r as fixed effec
Criterion; BIC, Bayesian Information Criterion; log-Lik, log-Likeliho
with the number in this column.
Note. Estimates are based on 682 data points. Correlations were fixed
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the correlations in Experiment 1); therefore we fixed
all correlations to zero. Version 5 provided a signifi-
cantly better fit than the models nested below it.
The parameter estimates of this model are shown in
Table 6. The estimated means and standard deviations
match closely those of the previous experiments with
spatial updating (Table 2) and numerical updating
(Table 4), with the exception of the numerical rate,
which was larger than in the previous experiment
and had a smaller standard deviation (although the
latter came with a very broad confidence interval).
The model predictions are added as lines to Fig. 7,
and the TAF parameters estimated from them are dis-
played alongside those from the data in Fig. 8. The
model reproduced the critical pattern of dual-task
effects on asymptotic accuracies well. The pattern of
CPTs across conditions was reproduced less accurate-
ly; the model underpredicted the means and standard
deviations of CPTs in the spatial part of the mixed
condition and the spatial memory-demand-4 condi-
tion. This deviation from the data points to possible
individual differences in the spatial conditions that
are not yet captured by the model. With sample sizes
as small as the present ones it is not possible to fur-
ther analyze these individual differences.

Discussion

Experiment 2 provided a successful generalization
of the interference model to a dual-task combination.
The model provided a satisfactory quantitative fit to
the data, and the parameter estimates closely matched
those from the previous two studies. The data of
Experiment 2 match the typical finding from dual-task
combinations of verbal (or numerical) with spatial
tasks, in that they exhibit a double dissociation
between the two content domains. This pattern is usu-
ally interpreted as evidence for two separate working
memory systems. The interference model reproduced
the double dissociation with a single parameter specific
xperiment 2)

BIC log-Lik R2
adj Sign

�863 460.9 0.771
�954 509.3 0.810 0
�992 528.4 0.819 0
�942 506.7 0.815 0
�1005 538.4 0.827 1,2
�1031 557.7 0.842 4

ts. Par, number of free parameters; AIC, Akaike Information
od; Sign, model fit is significantly better than the nested model

to zero.



Table 6
Parameter estimates of interference model (Version 5) for numerical, spatial, and dual-task memory updating (Experiment 2)

Cnum Cspat Cmix rn rs r

Mean 0.30 [0.26, 0.34] 0.47 [0.43, 0.51] 0.25 [0.21, 0.30] 1.02 [0.95, 1.12] 1.38 [1.12, 1.64] 0.15 [0.14, 0.17]
Standard

deviation
0.041 [0.023, 0.090] 0.056 [0.033, 0.101] 0.056 [0.036, 0.107] 0.068 [0.001, 1.140] 0.410 [0.223, 0.659] 0.023 [0.013, 0.034]

Note: Data are estimates for the parameter means and their standard deviations in the participant sample (95% confidence intervals in
brackets); as there were only ten subjects, correlations can not be estimated reliably and therefore were fixed at zero.
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to the dual-task combination (Cmix), showing that the
present data can be explained parsimoniously in the
context of a single working memory system. The inter-
ference model, therefore, offers a way of reconciling
evidence for a dissociation of content domains in
working memory with evidence for a strong associa-
tion of working memory performance across domains
(the latter coming mostly from correlational studies,
e.g., Kane et al., 2004; Oberauer, Süß, Wilhelm, &
Wittmann, 2003). We can think of working memory
as a unitary system, described by domain-general prin-
ciples and some domain-general parameters, operating
on different kinds of representations with different
operations, which require parameters specific to them.
One consequence of this view is that there should be
positive correlations between individual’s parameter
estimates (in particular C and r) across domains,
which could explain the correlations of performance
in verbal and in spatial working memory tasks
observed in factor-analytic studies. Unfortunately,
our present sample size is much too small to test this
prediction.

The interference model treats the double dissocia-
tion of the verbal–numerical and the spatial domain
as a special case of the general principle that the
degree of interference is a function of representational
overlap. Thus, it should be possible to construct sim-
ilar double dissociations between any two content cat-
egories when the inter-item overlap within a category
is substantially larger than the overlap of two items
from different categories. Support for this assumption
comes from dual-task studies combining different
kinds of verbal materials. Combining a sentence read-
ing task with memory for numbers, or an arithmetic
processing task with memory for words, leads to less
interference than combining sentence reading with
memorizing words or arithmetic with recall of digits
(Conlin et al., 2005; Li, 1999; Turner & Engle,
1989). Serial recall of consonants was better when a
set of digits had to be remembered simultaneously,
than with a second set of consonants. Conversely,
short-term memory for digits suffered more from a
secondary load with digits than with consonants
(Sanders & Schroots, 1969).
The results of Experiment 2 challenge a model of
working memory that explains capacity limits purely
in terms of time-based decay and rehearsal. In our
competitive test of various formal models, a decay
model was the only model besides the interference
model to provide a good fit of time-accuracy functions
from the numerical memory updating task (Oberauer &
Kliegl, 2001). A model along similar lines has been
advanced and successfully tested by Barrouillet et al.
(2004). So far, that model has been applied only to
data from tasks with verbal or numerical contents.
Our decay model as well as the time-based resource
sharing model of Barrouillet et al. assume that only
one process can occur at any time, either an updating
operation on an item in working memory or a rehears-
al process. This account explains MD effects by the
increasing demand for rehearsal when more items are
held in working memory. With a single processing
mechanism—a ‘‘retrieval bottleneck’’ in Barrouillet
et al.’s theory—this model predicts equal performance
for pure and for mixed sets of four items. The asymp-
tote and the CPT of the mixed condition, therefore,
should only depend on the difficulty of the tasks com-
bined in that condition, that is, they should be interme-
diate between the conditions of the numerical MD 4
and the spatial MD 4 condition, contrary to our find-
ings (and those of many other dual-task studies). One
way around this problem would be to allow separate
rehearsal mechanisms for verbal and for spatial con-
tents of working memory that can run in parallel. Split-
ting the rehearsal mechanism into two would raise the
question whether operations that manipulate working
memory contents in the two domains (e.g., an arithme-
tic operation and a spatial shift) could also run in par-
allel. Evidence with self-paced versions of the mixed
memory-updating task suggest that this is possible only
after several hours of practice (Oberauer & Göthe,
2006; Oberauer & Kliegl, 2004). If two rehearsal mech-
anisms are assumed to operate in parallel even in
unpracticed participants, we must assume that rehears-
al is not constrained by the same domain general bot-
tleneck that constrains other working memory
operations in unpracticed people. This conclusion,
however, clashes with a basic assumption of our decay
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model (Oberauer & Kliegl, 2001) as well as the decay
based model of Barrouillet et al. (2004), namely, the
assumption that the updating operations in the present
task, as well as other concurrent processing tasks, com-
pete with rehearsal for time. It is not clear at the
moment whether another model based on decay and
rehearsal can be formulated that can account for the
double dissociation of verbal and spatial working mem-
ory, but it seems clear that such a model would have to
differ substantially from the one that we have previous-
ly fitted with good success to the numerical updating
data.
8 In German, the similar letter set is pronounced: ‘‘/be:/ /tse:/
/de:/ /e:/ /Ef/ /ge:/’’. The dissimilar set is pronounced ‘‘/ha:/ /i:/
/jOt/ /ka:/ /El/ /Em/’’. The manipulation of feature overlap
achieved by contrasting these sets is not ideal because most
letters in the similar set share the same phoneme, /e:/, contrary
to the assumption of stochastic independence of feature
overwriting. If anything, this violation of a model assumption
should work against the hypothesis of a good model fit. The
violation is not as severe as it might look because phonemes are
certainly not the only features by which letters are represented,
and not the only features shared between letters in a set (other
features would include the alphabet position of a letter, its
visual shape, and features coding for the categories consonant
and vowel). We have run simulations in which we manipulated
similarity by having all stimuli in the similar set share the same
20% of all feature units—generating an increase in C larger than
estimated in Experiment 3. The decrease of Ai with MD from 1
to 4 could still be extremely well approximated by Eq. (4),
R2 > .98. Apparently, the model is robust against a modest
degree of violation of the stochastic independence assumption.
Experiment 3

If interference is a function of representational
overlap, it should be possible to vary the degree of
interference by working with similar and dissimilar
memory sets from the same content domain. This is
a specific prediction of the interference model. Work-
ing-memory models assuming that capacity limits arise
from a limited quantity of resources—either from a
general pool or from multiple domain specific
pools—do not predict differential interference effects
as long as all memory sets come from the same con-
tent domain and tap into the same resource. Likewise,
models based on decay as the cause of limited capac-
ity in working memory do not predict similarity effects
within domains. Experiment 3 is an attempt to manip-
ulate the interference parameter by the degree of sim-
ilarity between memory items within a content
domain.

We used the well-known phonological similarity
effect (Conrad & Hull, 1964) to manipulate the degree
of overlap between representations that must be held
in working memory simultaneously. To this end, we
designed a memory-updating task with letters as mate-
rial. The interference model predicts that the interfer-
ence parameter C will be larger with a set of
phonologically similar letters than with a set of pho-
nologically dissimilar letters.

Method

Participants

Seven high-school students from Potsdam and one
student from the University of Potsdam participated in
the experiment, which consisted of 16 1-h sessions. Their
mean age was 20.0 years (SD = 2.07), and four of them
were female. Participants received 12,- DM for each
session.

Design and procedure

A memory-updating task with letters was used. In the
similar condition, the letters were from the set ‘‘B, C, D,
E, F, G’’. In the dissimilar condition, the set was ‘‘H, I,
J, K, L, M’’.8 Letters were updated by letter arithmetic
operations (e.g., C + 2 = E). The operations ranged
from �2 to +2, and their results always remained within
the respective letter set. Therefore, not only the starting
values, but also the intermediate and final results of
updating operations were phonologically similar in one
condition, and dissimilar in the other.

Before starting with the memory-updating task, par-
ticipants practiced letter arithmetic for two 1-h sessions.
The goal of the training was to bring participants as
closely as possible to automatic performance of the letter
arithmetic operations, and to equate their performance
on the different equations as much as possible. Partici-
pants responded to single letter equations (e.g.,
‘‘B + 2 = ?’’) by typing the correct letter key on the key-
board. Each session comprised 24 blocks with 30 trials
each. Within one block, the same set of letters was used
for all equations. All equations started with a letter from
the set, combined with one of the four operations (+1,
�1, +2, �2), and resulted in another letter of the set.
The equations within a block were generated at random,
with the constraint that all possible equations were pre-
sented once before one was repeated. The letter set used
in each block was indicated by the color of the question
mark in the equations; the corresponding letters were
marked with a colored transparent patch on the comput-
er keyboard (red for the similar and blue for the dissim-
ilar letters). The sequence of blocks was determined
adaptively. After the first two blocks, one with each let-
ter set, the next block always used the letter set on which
the performance score on the last block with the same
set had been worse. The performance score was the
number of errors if more than three errors were made
in one of the two blocks compared, and the mean
reaction time otherwise. This algorithm provided more
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training for the letter set with which a participant per-
formed worse.

After the training sessions, participants worked on
memory-updating tasks with letters. There were four
conditions of memory load (1-4 letters) crossed with
two conditions of phonological similarity. Each of the
14 sessions comprised eight blocks in a fixed order of
memory loads (1-4-3-2-2-3-4-1), with the similarity con-
ditions alternating between blocks. Different from the
previous experiments, presentation times were fixed.
There were ten presentation times for each memory-de-
mand condition; they ranged from 250 ms to 4 s for MD
1, and from 400 ms to 5 s for MD 4, with the other con-
ditions in between. Presentation times were assigned to
the trials in a semi-random order with the constraint
that each presentation time was used in each condition
14 times. The first two sessions on the memory-updating
task were regarded as practice and not included in the
analysis. This leaves 12 trials for each combination of
MD, similarity condition, and presentation time.

One additional change from previous experiments
was that we lined up the frames in a row in the middle
of the screen instead of the circular arrangement used
so far. This was an attempt to manipulate the spatial dis-
criminability of the frame positions. In a study of short-
term memory for letters in spatial arrays, Healy (1977)
found better memory for letters at the ends of the array
than in the middle. No such effect was observed in the
present experiment, so we will not discuss this manipula-
tion further. A further change was that the locations of
the updating operations were determined at random
with the constraint that they be equally distributed
across all locations within each sequence of eight opera-
tions. Therefore, not every transition from one opera-
tion to the next involved an object switch (i.e., the
probability of repeating the object was 1/n), and the next
object to be accessed was not predictable.

Results

Letter arithmetic training

Due to computer failure, training data from two par-
ticipants were lost. For the remaining six participants,
reaction times for correct responses were analyzed after
trimming values that exceeded the individual’s mean in a
session by three standard deviations. Four participants
received more training sessions on the dissimilar than
on the similar letter set, and two received more training
on the similar set. We aggregated reaction times of the
first three blocks and the last three blocks within each
letter set. There was no difference in mean reaction times
between sets at the beginning of training. The means
were 2.5 s for similar letters (SD = 0.3) and 2.3 s for dis-
similar letters (SD = 0.5). Over the last three blocks,
however, there was a tendency for similar letters to be
responded to faster, which just failed the conventional
significance level, t(5) = 2.46, p = .057. The means were
1.3 s (SD = 0.1) for similar and 1.5 s (SD = 0.3) for dis-
similar letters. Thus, we have reasons to believe that the
letter-updating task on its own is easier with the letters
from the similar set. This may be the case because the
similar set was taken from the beginning of the alphabet,
where the sequence might be represented more accurate-
ly than in the middle part from which the dissimilar set
was taken. If this is the case, it should be manifest as dif-
ferent rate parameters in the model for the two letter
sets. The difference should point in the opposite direc-
tion from that expected for the interference parameter:
similar letters should yield larger interference, but a
higher processing rate than dissimilar letters.

Memory updating

Time-accuracy functions averaged over participants
are presented in Fig. 9. The data were analyzed by fitting
descriptive TAFs as in the previous experiments. We
tested differences between conditions with a contrast
for similarity, the linear and quadratic contrasts of
MD, and their interactions with similarity. The best fit-
ting model included significant linear contrasts on all
three parameters as well as a quadratic contrast on b.
The main effect of similarity was not significant on any
of the TAF parameters, but there was a significant inter-
action of similarity with the linear contrast of the c

parameter. As shown in Fig. 10 (upper left panel),
asymptotic accuracy declined faster over MD in the sim-
ilar than in the dissimilar condition. Random effects
were significant for the linear contrasts on b and c,
and for the main effect of similarity on c. The descriptive
model had an adjusted R2 of .811.

The interference model was fitted to each partici-
pant’s data for similar and dissimilar letter sets simulta-
neously. There were five free parameters: two overlap
parameters for similar letters (Csim) and dissimilar letters
(Cdis), the rate parameters r and r1, and the noise param-
eter r (Csim was not estimated directly but through a
multiplicative factor Fsim, with Csim = Fsim · Cdis). The
model fits are presented in Table 7. Given the small N,
we again constrained all correlations to zero. A model
with four random effects (Model 5) provided the best
fit. Table 8 summarizes the parameter estimates. As
expected, Csim was estimated to be larger than Cdis

(i.e., Fsim was significantly larger than 1). The model
predictions for asymptotes and CPTs are shown in the
bottom panel of Fig. 10. The model reproduced the
interaction between memory load and similarity on
the asymptotes, as well as the roughly linear increase
of CPTs over MD.

Because in the training data a difference in processing
speed between similar and dissimilar sets emerged, we
also tested a model version that allowed different rates
for the two similarity conditions. This led to no signifi-
cant improvement in fit over model version 5b. Allowing



Fig. 9. Data from Experiment 3 (points) and predictions of the interference model (lines), averaged over participants. Error bars
represent 95% confidence intervals.
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different noise parameters, however, improved the fit sig-
nificantly, although not dramatically (AIC = �963,
BIC = �913, log-Likelihood = 492.4, R2

adj ¼ :763). The
noise parameter for similar items was estimated at
.171, whereas r for dissimilar items was .184. In this
model version, Fsim increased to 1.20 [CI = 1.13, 1.27],
reflecting a more pronounced difference between the C

parameters in the two similarity conditions. One expla-
nation for this set of results is as follows. The larger
degree of feature overlap in the similar set was in part
counteracted by the smaller amount of noise in that
set, possibly because the early part of the alphabet was
more clearly represented in participants’ long-term
memory. When the model is not permitted to distinguish
the two noise parameters, it uses an average noise
parameter that leads to underprediction of performance
in the similar condition, and this is partly compensated
by understating the degree of overlap in that condition.

The model estimates contained one surprising out-
come, the high value estimated for the rate parameter.
Letter arithmetic should be a relatively slow process
compared to digit arithmetic or shifts of spatial posi-
tions. The high r does not reflect a misspecification of
the model, however, but truly represents a feature of
the data. The CPTs for MD 1, which can be regarded
as the purest assessment of processing speed in the pres-
ent paradigm, were substantially lower in letter arithme-
tic than in digit arithmetic (compare Fig. 10 with Fig. 6).
For some reason, participants in Experiment 3 accom-
plished letter arithmetic operations faster than partici-
pants in the numerical updating experiment
accomplished digit arithmetic. One reason for this could
be that the letter arithmetic task involved a smaller set of
operations (4) and a smaller set of possible results (6), so
that retrieval competition for arithmetic facts was lower
in the present experiment. Another reason could be the
task-specific practice prior to the assessment of memory
updating.
Discussion

Experiment 3 provided a successful parameter
manipulation for the interference model. As predicted,
phonologically similar memory contents yielded a larger
interference parameter than phonologically dissimilar
contents. This happened despite the fact that dissimilar
items were associated with slower processing, as became



Fig. 10. Asymptotic accuracies and time demands for 80% of the asymptote (CPT 80) for similar and dissimilar letter sets in
Experiment 3, estimated from fits of descriptive time-accuracy functions to the data (top panels) and to the predictions of the
interference model (bottom panels). Error bars represent 95% confidence intervals.

Table 7
Model fits for memory updating with similar and dissimilar letters (Experiment 3)

Nr Fixed effects Random effects Par AIC BIC log-Lik R2
adj Sign

0 Cdis, Fsim, r, r Cdis 6 �787 �761 400.0 0.671
1 Cdis, Fsim, r, r1, r Cdis 7 �845 �813 429.3 0.700 0
2 Cdis, Fsim, r, r1, r Cdis, r 8 �944 �909 480.1 0.748 1
3 Cdis, Fsim, r, r1, r Cdis, r 8 �852 �816 433.9 0.711 1
4 Cdis, Fsim, r, r1, r Cdis, r, r1 9 �860 �821 439.5 0.720 3
5 Cdis, Fsim, r, r1, r Cdis, r, r1, r 10 �952 �908 486.2 0.759 4
6 Cdis, Fsim, r, r1, r Cdis, Fsim, r, r1, r 11 �950 �901 486.2 0.759 not 5

Legend: Par, number of free parameters; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; log-Lik, log-
Likelihood; Sign, model fit is significantly better than the nested model with the number in this column (and all worse fitting nested
models).
Note. Estimates are based on 868 data points. Correlations were fixed to zero.

Table 8
Parameter estimates of interference model (Version 5) for memory updating with similar and dissimilar letters (Experiment 3)

Cdis Fsim r R1 � r r

Mean 0.34 [0.32, 0.36] 1.09 [1.05, 1.13] 2.10 [1.82, 2.39] 0.89 [0.63, 1.15] 0.18 [0.16, 0.20]
Standard deviation 0.013 [0.003, 0.062] (Fixed) 0.36 [0.19, 0.68] 0.16 [0.03, 0.91] 0.026 [0.015, 0.044]

Note: The top two rows of the table contain estimates for the parameter means and their standard deviations in the participant sample;
as there were only eight subjects, correlations can not be estimated reliably and therefore were fixed at zero.
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apparent in the training data. The faster processing of
items from the similar set provided an opportunity to
dissociate storage and processing in working memory.
The same experimental manipulation that increased
the processing speed for single items reduced the capac-
ity to hold several items in working memory simulta-
neously. Such a dissociation constitutes another
challenge for a decay based model of capacity limits in
working memory. A crucial assumption of decay models
is that processing of items competes with rehearsal
(Barrouillet et al., 2004; Salthouse, 1996; Towse, Hitch,
& Hutton, 2000). If an experimental manipulation
speeds up processing, then there should be more time
for rehearsal. In the present experiment, there is no rea-
son to believe that similar items take longer to rehearse,
or decay faster than dissimilar items. Therefore, decay
theories have no obvious means to explain why similar
items are remembered worse than dissimilar ones under
conditions of high memory load.

Of course, decay based models—as well as models
assuming limited resource pools—can account for effects
of within-domain similarity on recall accuracy, but only
by introducing an additional mechanism generating sim-
ilarity-based interference (e.g., Page & Norris, 1998).
The success of our model shows that the particular inter-
ference mechanism it incorporates is sufficient to explain
the observed capacity limits in at least one working
memory task in great detail. This finding raises the pos-
sibility that other mechanisms such as decay or resource
limitations are not necessary to explain the limited
capacity of working memory.
General discussion

The goal of this work was to explore a simple for-
mal model of capacity limits and processing dynamics
in working memory. We focused on the interference
model because that model had emerged as the most
successful one in a previous study that comparatively
fitted six models to time-accuracy functions of young
and old adults on the numerical memory-updating
task (Oberauer & Kliegl, 2001). Here we developed
an improved version of the interference model based
on a more detailed explication of its representation
and processing assumptions. The model explains the
effects of increasing memory demand—defined as the
number of independent items to be held available at
the same time—on both accuracy and processing
speed. With increasing memory demand, each individ-
ual item suffers from interference from more other
items. Interference means that part of an item’s fea-
ture-based representation is overwritten, resulting in
less overall activation of the representation, and thus
to a reduced probability of recalling the item, as well
as slower processing.
Instead of fitting the model separately to each individ-
ual, we used NLME as an integrated framework for fitting
simultaneously fixed effects (i.e., parameter means) and
random effects (i.e., standard deviations and correla-
tions). This approach uses substantially fewer free param-
eters (e.g., only 15 parameters for model version 5 to fit
999 data points in Experiment 1, compared to four param-
eters for each of 21 participants = 84 parameters for indi-
vidual fits and increasing with each additional
participant), and thereby reduces the chance of overfitting
(i.e., adapting parameter estimates to random fluctua-
tions across participants). We successfully extended the
model to a spatial version of memory updating and to a
combination of numerical and spatial updating, and we
provided an experimental validation of the overlap
parameter C by manipulating phonological similarity in
a letter updating task.

Evaluation of the interference model

How good is the quantitative fit of the interference
model to the present data sets? It is important to note
that using the NLME framework enabled us to account
for the variance associated with a large number of data
points with an extremely small number of free parame-
ters. The ratio of free parameters to data points (1:50
or more) is an order of magnitude smaller than in most
conventional model fits. Given that there is considerable
noise in the individual data (see Fig. 2), we feel that
accounting for 80–90% of the variance is about as much
as one can expect with a framework such as NLME that
protects against overfitting (i.e., fitting unsystematic var-
iance). In the following we use the adjusted R2 values of
the descriptive TAF fits to the data as a benchmark for
how much variance we can expect a model such as our
interference model to explain. The R2

adj of descriptive
functions for numerical updating was .888, compared
to .877 for the interference model (version 5). For spatial
updating (Experiment 1), the R2

adj were .852 (descriptive)
and .830 (model); for the dual task, the descriptive val-
ues were .854 and .817 (numerical and spatial, respec-
tively) and .842 (model), and for the letter updating
task, .811 (descriptive) and .759 (model). Thus, except
for letter updating (Experiment 3), the model came rea-
sonably close to the maximum of systematic variance
that it can be expected to account for.

We did not formally compare the interference model
to competing models in this article, so readers might
wonder whether other models of about equal complexity
could give an equal or even better account of the data.
We doubt this. In our previous study (Oberauer &
Kliegl, 2001), we found that four other models—two
based on a constant limited amount of resources, one
assuming a ‘‘magical number’’ of chunks that can be
held in working memory, and one based on crosstalk
at retrieval of target items from cues—had a common
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problem: they could not reproduce the accelerated
decline of asymptotic accuracy with increasing memory
demand, together with a slowing of processing speed rel-
ative to that asymptote with increasing MD (as reflected
by the CPTs). Only the interference model and the decay
model reproduced this pattern. The present data from
Experiment 1 showed the same shape of the MD effects
on asymptotic accuracy and CPTs. The models that did
not do well on the numerical updating data would there-
fore show qualitative misfits to the data of the present
Experiment 1 as well. The decay model can handle the
shape of the MD function on asymptotic accuracy, but
it has problems with accounting for the data of Experi-
ments 2 and 3, because it has no mechanism for explain-
ing why asymptotic accuracy varies systematically with
the similarity of the material held in working memory.
Among the models that have so far been formalized
for application to time-accuracy functions, the interfer-
ence model is the only one that reproduces the qualita-
tive patterns in the data presented here and in
Oberauer and Kliegl (2001).

The interference model in its present form does, how-
ever, show one systematic quantitative misfit, it under-
predicts the increase of CPTs over memory demand in
the spatial task (Experiments 1 and 2) and in the letter
arithmetic task (Experiment 3). There are several possi-
bilities for improving the model in this regard. One
straightforward amendment would be to let rate increase
with memory demand. There is no theoretical rationale
for doing this, however. A second possibility is to let
the noise parameter increase with memory demand.
With an increasing amount of feature overlap we can
expect that not only the mean proportion of overwritten
feature units increases but also the trial-to-trial variabil-
ity in that proportion, because not every pairwise com-
bination of items has the same degree of overlap, and
also because there might be some randomness in which
of two items sharing a feature unit will lose that unit.
Variability in the proportion of overwritten features nat-
urally translates into variability of available activation
Ai, so that increasing the noise parameter r as a function
of overall overlap is a plausible way of improving the
model. A third possible source of the increasing time
demand with higher levels of memory load could be that
rehearsal improves memory at long presentation times.
Rehearsal could be beneficial even in the absence of
decay if it involves processes going beyond pure mainte-
nance rehearsal. Maintenance rehearsal in itself would
not be expected to improve memory when feature over-
writing is the main cause of forgetting—repeating an
item to oneself could help to re-establish some of that
item’s lost features, but only at the expense of other
items that had previously grabbed these features. Elabo-
rative rehearsal, however, could improve memory by
enriching the representations with more features, or by
recoding items into more distinct representations with
less feature overlap. In the spatial updating task, for
instance, people might relate dot positions to each other
across several frames, forming an integrated pattern. In
the letter updating task, they might try to find a word
that integrates the current set of letters.

Implications for capacity limits in working memory

What does the present research imply for the general
question of what causes capacity limits it working mem-
ory? It should be clear, not only from our Experiments 2
and 3 but also from the large literature on similarity
effects in immediate recall paradigms (from Conrad &
Hull, 1964; to Conlin et al., 2005) that any viable model
must include some mechanism of similarity-based inter-
ference. Our present work shows that a model based on
two forms of similarity-based interference—overwriting
of shared features and confusion of similar items at
recall—is sufficient to account for a particularly rich
set of data from one working memory paradigm. Our
research does not rule out that, in addition, other factors
such as time-based decay or resource limitations contrib-
ute to forgetting, and thereby to capacity limits in work-
ing memory. Other data might force us to consider a
more complex model including multiple determinants
of capacity limitations. Our reading of the literature
on whether there is time-based decay in working memo-
ry is that there is as yet no compelling evidence for a
substantial contribution of decay to forgetting in imme-
diate memory tasks (Nairne, 2002), and fairly strong evi-
dence against it (Lewandowsky, Duncan, & Brown,
2004). It still remains to be shown, however, that the
interference mechanisms built into our model are suffi-
cient to explain forgetting in other paradigms used to
study short-term and working memory.

One popular paradigm used to study working mem-
ory is known as the complex span paradigm, in which
participants must alternate between encoding memory
items and processing other information. The presently
most elaborated model for that paradigm is the time-
based resource sharing model of Barrouillet et al.
(2004). This model assumes time-based decay as the
cause of forgetting. Support for the model comes from
four related findings: (1) memory performance in the
complex span paradigm is unaffected by the number of
processing steps to be performed between encoding of
successive items; (2) memory is unaffected also by the
total time spent on the processing task, but (3) it declines
with increasing rate of processing (i.e., number of steps
per time), and (4) memory also declines when each pro-
cessing step requires more time. These findings are
explained by the time-based resource sharing model as
follows: items in working memory decay over time. An
attentional bottleneck can be devoted either to executing
a processing step or to retrieving a memory item, there-
by refreshing that item’s memory trace. With a slower
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processing rate or shorter duration of individual pro-
cessing steps, there are more opportunities for the bottle-
neck to switch rapidly between executing a processing
step and refreshing some of the memory items, thereby
counteracting decay. The main determinant of forget-
ting, therefore, is the proportion of time in which the
attentional bottleneck is occupied by the processing
task, so that it cannot combat decay.

Although the evidence for this model is impressive,
none of it forces us to assume decay as the source of for-
getting. The findings obtained with the complex span
paradigm strongly suggest that the time available for
refreshing memory traces in between processing steps
is the main determinant of memory performance. This
idea is equally compatible with interference as the source
of forgetting. We can think of a version of the time-
based resource sharing model in which each processing
step generates an amount of interference that depends
on the degree of overlap between the current memory
items and the representations generated for the process-
ing task. Whenever the attentional bottleneck is avail-
able, it can be used to repair partially degraded
memory traces through retrieval and redintegration
(Lewandowsky, 1999; Schweickert, 1993). One advan-
tage of this interference version of Barrouillet et al’s idea
is that it can explain why the similarity between the
memory items and the material involved in the process-
ing tasks affects performance (Conlin et al., 2005; Li,
1999). An obvious next step on the route to a more com-
prehensive formal model of capacity limits in working
memory is to develop a formal model of the decay-based
and of the interference-based version of the time-based
resource sharing framework, and to focus empirical
investigations on their differential predictions.
Conclusions

To conclude, the interference model provides satis-
factory quantitative fits to four data sets, covering sev-
eral basic phenomena associated with working
memory capacity. No other formal model we are aware
of gives an equally accurate and parsimonious account
for these or another comparatively rich set of data.
We take the success of the interference model as support
for its underlying assumptions: the capacity of working
memory is limited by mutual interference between the
items held available simultaneously. Interference arises
from interactions between features of item representa-
tions, which lead to partially degraded memory traces.
The degradation of representations in turn leads to
slower processing and to retrieval errors. In addition,
other items in working memory compete with the target
item for recall, and that competition becomes larger as
more items are held in working memory and as they
are more similar to each other.
The details of our assumptions about the representa-
tions and processes in working memory, for instance the
binding mechanism using synchronous firing, and the
feature overwriting mechanism it entails, are probably
not essential to the success of the interference model.
Other forms of feature interaction, for instance the
migration of features from one item to another (cf. Jeff-
eries, Frankish, & Lambon Ralph, 2006), might underlie
the partial degradation of representations. (The param-
eter C would then represent the probability of a feature
to migrate from one representation to one particular
other representation currently held in working memory).
The formal model is cast on a very abstract level, leaving
open many details and making many simplifying
assumptions. The advantage of having a simple model
with few free parameters comes at the cost of underspe-
cifying many aspects of processes in working memory,
and hopefully misspecifying only a few of them. Models
on such an abstract level should therefore be comple-
mented by detailed simulations (i.e., computational
models) that implement the assumptions that we out-
lined here only verbally. Fine-grained implementations
of the interference model would enable us to make spe-
cific predictions arising from different ways in which fea-
tures interact, and how this interaction gives rise to the
capacity limit of working memory.
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