
The Navajo Language Literature
Project: A Case Study in Client-side
Design Patterns Using
Asynchronous Requests
..

Kip Canfield

Department of Information Systems ITE 425, University of

Maryland, UMBC, 1000 Hilltop Circle, Baltimore MD 21250, USA
...

Abstract
The Navajo Language Literature Project was established to create and deliver a
web-based, digital library of Navajo language texts. The current focus is to deliver
the texts on the web and allow collaborative editing for linguistic detail such as
word parses and glosses. The original implementation of the project used a
server-side design for the Internet applications. The addition of asynchronous
update to the server for this project gave the client web application more
responsibility and started a line of inquiry into how much processing can be
pushed to the web browser client. A major advantage of this move is a
simplification of deployment that can be beneficial for small and unfunded
projects in the humanities. The case study below defines and parameterizes a
model for this client-side pattern.

...

1 Introduction

The Navajo Language Literature Project was estab-
lished to create and deliver a web-based, digital
library of Navajo language texts. Navajo is not
originally a written language, but there have been
many written texts created from the 1800s forward.
These texts exist in a variety of orthographies, many
of which predate the current standard one. All of the
texts are not in digital format and so the first task in
this project was to develop a methodology to
acquire these texts in digital format and transform
them to the standard orthography (Canfield, 2005).
The next focus was to deliver the texts on the web
and allow collaborative editing for linguistic detail
such as word parses and glosses.

There are several options for the web application
interface. The traditional interface requires a

complete web page reload synchronously for every
update.1 This is the way that most updates are
currently done for web applications. Recently, web
developers have started to use XMLHttpRequest for
asynchronous update of web pages.2 This ability has
long been included in JavaScript, but has only
recently become popular due to standards compli-
ance by most browsers and increasing bandwidth
available to most web users. This interaction design
has been called Ajax for Asynchronous
JavaScriptþXML and this term was introduced in
Garrett (2005). Using this technique allows a web
application to appear more like a traditional non-
web client application due to lack of disruptive page
reloads and the ability to both gather information
for use in the web application and update server
resources while the user is engaged in other tasks on
the web page. Figure 1 shows the concept of

Correspondence:

Kip Canfield, Department of

Information Systems

ITE 425, University of

Maryland, UMBC, 1000

Hilltop Circle, Baltimore

MD 21250, USA.

E-mail: canfield@umbc.edu

Literary and Linguistic Computing, Vol. 22, No. 4, 2007. � The Author 2007. Published by Oxford University Press on
behalf of ALLC and ACH. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/llc/fqm024 Advance Access Published on 1 October 2007

395

asynchronous request for this project. The client
makes a request to the server for processing or
information and the server responds synchronously
with a complete web page or asynchronously with
either simple status information or the requested
text. In the case of a requested file, the JavaScript-
based Ajax engine integrates it into the interface
rather than through a page reload.

This project has experimented with several
models for implementing web-based delivery of
the project texts. The Navajo language texts are
scanned and a custom optical character recognition
program is applied resulting in plain text using
characters used in a standard Navajo font. Then the
texts are marked up to be compliant with TEI Lite.
Since only the Navajo language portion of the text is
stored as XML, the original Navajo language text
images, English translations, and footnotes are
delivered as images along with the marked up text.
This requires an interface that can present the
interrelated pages in an organized manner and a
server-side component that can handle serving these
related pages and also allows collaborative update.
The images of the original text have value both
because all images have not been recognized to text
and the original images include information that is

lost with regularization to the standard orthogra-
phy. For example, the idiosyncratic manner in
which some morphemes are put together by the
skilled Navajo transcribers could be mined for
evidence for morpheme boundary issues in Navajo
and Athapaskan languages in general (Rice, 2000).

The original implementation of the project used
a server-side design where most of the application
work was done on the server-side. The TEI texts
were stored in a native XML database and the TEI
markup contained all the information for the
interface. The markup included the word parses
and glosses, the links to the related images, and
XSLT was used to dynamically create the interface
by transforming those TEI documents. The XML
format proposed in Bird et al. (2003) was used to
add interlinear gloss text to the original texts and
links were inserted for reference to the correspond-
ing images from the original. Since this resulted
in a rather large document, page reloads were
reduced by using asynchronous updates for the
collaborative updating of that interlinear text. These
requests would use XUpdate to update the TEI in
the database via REST-style web services (Fielding,
2002) using XQuery. This works quite well and
is very suitable in doing searches of large

Fig. 1 Asynchronous versus Synchronous request

K. Canfield

396 Literary and Linguistic Computing, Vol. 22, No. 4, 2007

document collections. It is complex to develop and
maintain, however, and this can be a barrier to
especially small and unfunded projects in the
humanities. The addition of asynchronous update
to this project started a line of inquiry into how
much processing can be pushed to the web browser
client and the advantages and disadvantages of such
a move. The case study subsequently defines and
parameterizes a model to explore this question.

2 Design Pattern Model

The model used for this discussion can be
summarized in Fig. 2. This matrix has two axes
for the complexity of the interfaces (simple or
complex) and the location of the processing (client-
side or server-side). Each model quadrant is
described with parameters: the HTTP request type,
the client HTML design type, and the collaborative
database component.

The HTTP request type is either synchronous or
asynchronous. Complex interfaces require asyn-
chronous requests to reduce large page reloads
and client-centric processing requires it in order to
receive data files that would ordinarily be processed
at the server. The HTML design type is simple in the
case of HTML frames and complex for single
Document Object Model (DOM) implementations.
Frames are simple but reduce the options available
in the interface while DOM implementations can
rival the richness of traditional non-web client
applications at the cost of complexity. The final
parameter is where the collaborative update takes
place. This logically requires server-side processing.
In server-side design patterns, this would be done
with database updates via XUpdate or SQL. For a
client-centric design pattern, an outsourcing option
from Google spreadsheets is explored subsequently
that reduces the burden on small workgroups.

3 Model Axis: Interfaces

Figure 3 shows the simple frames-based interface.3

The displayed text is from Sapir and Hoijer (1942)
using the Times New Roman Navajo true type font

for the TEI and the scanned images for the other
documents.

Each document is presented in a separate frame.
The text in the dark frame is transformed to HTML
from the XML using a minor modification of the
standard TEI Lite style sheet. The right-hand frame
shows the image of the original text in the non-
standard orthography. The lower frame shows the
original footnotes image for the Navajo text. Since
the simple frames interface has limited ability to add
menu items, the user can replace the Navajo
language information in the right-hand and lower
frames with the images of the original English
translation and associated English footnotes by alt-
clicking in the dark text. Note that clicking (or alt-
clicking) in the dark text also draws the rectangle
around the corresponding text in the Navajo or
English images.

The coordination of these documents needs
to be stored someplace on the server. In the
original server-side processing project application,
this linking information was stored in the TEI
markup and a style sheet dynamically created
the frames interface. The client-side version of
the simple interface uses JavaScript Object
Notation (JSON) to deliver the linking information
to the client where the processing takes place.
The JSON for the linking shown in Fig. 3 is given
subsequently in Fig. 4.

This JSON format can be easily stored in XML
format as standoff markup (DeRose, 2004) for
archival purposes and batch transformed to JSON

C
om

pl
ex

Asynchronous

DOM

Google

Asynchronous

DOM

Database

Si
m

pl
e

Asynchronous

Frames

Google

Synchronous

Frames

Database

Client-side Server-side

Fig. 2 The model for design patterns

The Navajo Language Literature Project

Literary and Linguistic Computing, Vol. 22, No. 4, 2007 397

for the application. The ‘bindings’ specify the
linkages between all the TEI related files for the
interface: the Navajo image, the English translation
image, the Navajo footnote image, and the English
footnote image. There is only one TEI file for
each text with its multiple related image files.
Asynchronous request is required to use these
JSON files where each file is asynchronously down-
loaded and evaluated natively as a JavaScript object
in the client code. The use of JSON is a consistent
component of the client-side design pattern. It
allows dynamic delivery of information to the
JavaScript processing engine for the application.

Figure 5 shows the complex interface. This
interface is tabs-based and the entire page with all
the associated regions is under one DOM.

This allows a much richer interface at the cost of
complexity of the client application. The tabs can let
the user explicitly choose regions and associated
applications rather than the indirect keystrokes. For
the complex DOM implementation, asynchronous
request is needed for both avoiding large page
reloads and delivery of the JSON files.

4 Model Axis: Processing

The processing axis is best illustrated with the
update application added to the basic viewer
application described before. In the original appli-
cation design, interlinear information was added
directly to the TEI for the Navajo language texts.

Fig. 3 The simple frames-based interface

{"bindings": [
{"nifile": "sapir1a.html","eifile":"sapir1c.html","nfifile":"sapir1d.html","efifile":

"sapir1b.html"},
 {"nifile": "sapir2a.html", "eifile": "sapir2c.html", "nfifile": "sapir2d.html", "efifile":
"sapir2b.html"},
 {"nifile": "sapir3a.html", "eifile": "sapir3c.html", "nfifile": "sapir3d.html", "efifile":
"sapir3b.html"}
]
}

Fig. 4 JSON format

K. Canfield

398 Literary and Linguistic Computing, Vol. 22, No. 4, 2007

Either a synchronous or an asynchronous request
carried an XUpdate or SQL update to the server in
the traditional manner.

A later and more sophisticated on-line lexicon
design (Canfield, 2007) led to a major change for
the project client-side design pattern. Rather than
place the interlinear information into the main
document, each Navajo word in the TEI now
contains only an ID. A separate standoff document
relates each word ID to the relevant ID in the
Navajo lexicon document. Both this standoff word
document and the lexicon document are trans-
formed to JSON for delivery to the client. This
allows the client to manipulate both sources of
information as native JavaScript objects. It also
allows dynamic delivery of different sets of this
information to the client. Figure 6 shows the
complex interface with an added tab at the bottom
for the lexical lookup.

The user clicks on any word in the TEI region
and the lexical entry for that word is displayed in the
bottom region. One can also see the entire
searchable lexicon open in a new window by

clicking on the link in that region. No further
round trips to the server are required to display the
lexical entry of a word in the text or to see and
search the entire lexicon because that information
has already been delivered to the application via
asynchronous request and JSON files. Note that the
TEI region is displayed differently, but this is the
result of a different style sheet for the same TEI file
that allows easier line-by-line display while request-
ing lexical information.

Both of these documents that come down as
JSON files need to be updated collaboratively. Each
word of the TEI text needs to be linked to the
lexicon file and the lexicon itself needs updates. The
collaborative nature of this update requires central
server-side processing and handling of concurrency
issues. The traditional methods for native XML or
relational databases are effective and will continue
to be the standard, but this poses a problem for a
strictly client-side design pattern. This logically
server-side function can be adapted to the client-
side pattern by outsourcing it to the emerging
public access applications such as Google Docs.4

Fig. 5 The complex tabs-based interface

The Navajo Language Literature Project

Literary and Linguistic Computing, Vol. 22, No. 4, 2007 399

Figure 7 shows the Google spreadsheet collaborative
interface for the Navajo lexicon file.

Each of these JSON files can be stored in a
Google spreadsheet. Google spreadsheets allow
instant publishing on the web with access control
by email address for editors. Concurrency is
handled by notification of all simultaneous on-line
editors of a document with a chat function for
resolving updates. Since projects that would use
such a resource are small, this is a very effective
control. These spreadsheets can be exported peri-
odically to CSV format that can be easily trans-
formed to XML or JSON format.

5 Discussion

There are various permutations possible for this
design pattern model, but the most client-centric
one from the upper left-hand corner is described as
follows. The Navajo language texts are acquired and
put in TEI form. XSLT style sheets transform these

documents to HTML that can be published on the
web server. The standoff markup that describes the
interlinear text and the document linking structures
is transformed to JSON rather than HTML and
these are published on the web server. Finally the
lexicon document is transformed to JSON and
published. When a user requests the main applica-
tion over the web, all of these files are dynamically
integrated to produce a fairly sophisticated interface
with no significant server-side processing.

The only maintenance for this kind of imple-
mentation is update and organization of files on the
web server using typical client-side tools. The
web application is a framework that can be
customized for a particular project and then no
further changes are required unless requirements
change. All the files for the project can be created in
XML and then transformed to either HTML or
JSON in batch form and then placed into the
appropriate directories on the web server. Updates
to the interlinear text or lexicon can be collabora-
tively done using Google spreadsheets and

Fig. 6 The update application on the complex interface

K. Canfield

400 Literary and Linguistic Computing, Vol. 22, No. 4, 2007

frequently saved as CSV files by a project individual
with the publishing responsibility. Then these files
can be batch transformed to JSON and published to
the project directories. This design pattern is well
suited for small work groups in the humanities
where maintenance-intensive server-side programs
can be a barrier for web publishing of projects that
require more user interaction than just viewing a
static web page. This pattern allows that interaction
and collaboration with only a web server on the
server-side. Furthermore, this is a pattern that is
easily setup for a work group by a specialist in
humanities computing and then that group can take
over the project.

6 Previous Work

The concept of a design pattern was introduced by
Alexander et al. (1977) in the area of architecture. It
was used for software patterns in Gamma et al.
(1995) and became a popular abstraction as a

general and repeatable solution to a commonly
occurring problem in software design. This abstract
concept of pattern was then used for software
frameworks in object-oriented design. A framework
(Larman, 2002) is a reusable design pattern that is
expressed as a set of abstract classes and instances
that collaborate. Both of these concepts were used in
a research area for hypertext theory called Structural
Computing (Nurnberg et al., 2003). Kenneth
Anderson defines ‘Structural computing is a new
paradigm of computation that asserts the primacy
of structure over data. The field of structural
computing is working to produce a set of principles,
techniques, and technologies to ease the task of
developing domain-specific application infrastruc-
ture.’5 The current project attempts to create a
domain-specific framework that uses a client-side
design pattern to simplify the application infra-
structure. The ARCHway project has a non-web
based framework for creation of image-based
electronic editions of Old English texts (Kiernan
et al., 2005). A goal of this project is to try

Fig. 7 Google spreadsheets for collaborative editing

The Navajo Language Literature Project

Literary and Linguistic Computing, Vol. 22, No. 4, 2007 401

and approach the richness of such a non-web
application using internet application technology.
The MIT Exhibit project (Huynh et al., 2007)
creates a lightweight structured data publishing
framework that allows publishing at very low cost
and provides structure to what would ordinarily be
static HTML.

7 Future Work

The use of the JSON files for delivery of
information to the client as JavaScript objects
promises to be a useful area for further work.
Client-side applications dynamically receive the
JSON-based templates that specify the static and
behavioral aspects of domain-specific structure
abstractions (Tzagarakis et al., 2006). A related
topic for research is the ability for asynchronous
methods to accumulate information from the web
server(s) for ‘just-in-time’ delivery to the client in
a more seamless way. For this Navajo language
application, an example use of this is for the
application to continuously request lexical infor-
mation from the on-line dictionary for delivery as
JSON so that it is more likely to be immediately
available to the user when needed.

The format used for the lexicon for this project
exports an RDF ontology that describes the terms in
the associated lexicon. This ontology is being
converted to the OWL language (Antoniou et al.,
2003) and linked to the GOLD linguistic ontology
using the owl:sameAs statement that indicates that
two URI references actually refer to the same thing.
This will allow for more global linguistic research
(Simons et al., 2004).

The Navajo Language Literature Project con-
tinues to acquire texts for the digital library while
experimenting with the software for delivery of the
texts. Additionally, the on-line Navajo language
lexicon based on the work of Young et al. (1992)
continues to evolve for closer integration with this
digital library. The client-centric design pattern
described in this article allows a sophisticated and
interactive application without the need for exten-
sive server-side processing.

References
Alexander, C., Ishikawa, S., Silverstein, M.,

Jacobson, M., Fiksdahl-King, I., and Angel, S.

(1977). A Pattern Language: Towns, Buildings,

Construction. New York: Oxford University Press.

Antoniou, G. and Frank van, H. (2003). Web Ontology

Language: OWL. In Staab, S. and Studer, R. (eds),

handbook on ontologies in information systems.

Heidelberg: Springer-Verlag, pp. 115–150.

Bird, S., Bow, B., and Hughes, B. (2003). Towards a

General Model of Interlinear Text, EMELD Language

Digitization Project, Michigan State University, July

11–13. http://emeld.org/workshop/2003/bowbaden

bird-paper.html (accessed 24/1/2006).

Canfield, K. (2005). A Pilot Study for a Navajo Textbase,

In proceeding of ACH/ALLC Conference. University of

Victoria, CA, June 15–18. http://mustard.tapor.uvic.ca/

cocoon/ach_abstracts/xq/xhtml.xq?id¼35 (accessed

24/1/2006).

Canfield, K. (2007). Issues in Presentation and

Representation for the Navajo Lexicon, Conference on

Endangered Languages and Cultures of Native America,

CELCNA April 13–15, Salt Lake City, Utah.

DeRose, S. (2004). Markup Overlap: A Review and

a Horse, In Proceedings of Conference on Extreme

Markup Languages. http://www.mulberrytech.com/

Extreme/Proceedings/html/2004/DeRose01/EML2004

DeRose01.html (accessed 24/3/2007).

Fielding, R. T. and Richard N. T. (2002). Principled

Design of the Modern Web Architecture. ACM

Transactions on Internet Technology (TOIT), 2(2).

Gamma, E., Richard, H., Ralph, J., and John, V. (1995).

Design Patterns: Elements of Reusable Object-Oriented

Software. Upper Saddle River, NJ: Addison-Wesley.

Garrett, J. J. (2005). Ajax: A New Approach to

Web Applications, http://www.adaptivepath.com/

publications/essays/archives/000385.php (accessed 24/

1/2006).

Huynh, D., Robert M., and David K. (2007). Exhibit:

Lightweight Structured Data Publishing, 16th

International World Wide Web Conference, May 8–12.

http://people.csail.mit.edu/dfhuynh/publications.html

(accessed 24/3/2007).

Kiernan, K., Jerzy, W. J., Alex, D. et al. (2005). The

ARCHway Project: Architecture for Research in

Computing for Humanities through Research,

Teaching, and Learning. Literary and Linguistic

Computing, 20 (Suppl 1) 69–88.

K. Canfield

402 Literary and Linguistic Computing, Vol. 22, No. 4, 2007

http://emeld.org/workshop/2003/bowbaden
http://mustard.tapor.uvic.ca/
http://www.mulberrytech.com/
http://www.adaptivepath.com/
http://people.csail.mit.edu/dfhuynh/publications.html

Larman, C. (2002). Applying UML and Patterns: An

Introduction to Object-oriented Analysis and Design and

the Unified Process. Upper Saddle River, NJ: Prentice

Hall PTR.

Nürnberg, P. J., Wiil, U. K., and Hicks, D. L. (2003).

A Grand Unified Theory for Structural Computing.

In Proceedings of the 2nd Metainformatics Symposium,

Lecture Notes in Computer Science. Springer Verlag.

Rice, K. (2000). Morpheme Order and Semantic Scope:

Word Formation in the Athapaskan Verb, Cambridge

Studies in Linguistics 90. Cambridge: Cambridge

University Press.

Sapir, E. and Hoijer H. (eds) (1942). Navaho Texts.

Iowa City: Linguistic Society of America.

Simons, G., Fitzsimons, B., Lanham, A., et al. (2004).

A Model for Interoperability, EMELD Language Digi-

tization Project Conference, Wayne State University,

Detroit, MI, July 15–18. http://emeld.org/workshop/

2004/langendoen-paper.html (accessed 24/1/2006).

Tzagarakis, M., Vaitis, M., and Karousos, N. (2006).

Designing Domain-Specific Behaviors in Structural

Computing. New Review of Hypermedia and

Multimedia, 12(2): 113–42.

Young, R. W., Morgan, W. Sr, and Sally, M. (1992).
Analytical Lexicon of Navajo. Albuquerque: University
of New Mexico Press.

Notes
1 Synchronous behavior means that the client must wait

until the server responds to do any further processing.
Asynchronous behavior allows the client to continue
processing and then deals with the return as a callback
interrupt.

2 The XMLHttpRequest JavaScript object allows web
clients submit and retrieve data directly in the back-
ground without a web page reload. The asynchronous
return must be handled as a callback that interrupts and
updates the page dynamically.

3 The reader can get a better idea of how all the interfaces
work by visiting the demonstration site created for this
article at http://zaad.umbc.edu/nllp/ (accessed 26/03/
2007). It includes screencasts and software
demonstrations.

4 See http://docs.google.com (accessed 22/03/2007).
5 http://www.sigweb.org/community/labs/colorado04.

shtml (accessed 24/3/07).

The Navajo Language Literature Project

Literary and Linguistic Computing, Vol. 22, No. 4, 2007 403

http://emeld.org/workshop/
http://zaad.umbc.edu/nllp/
http://docs.google.com
http://www.sigweb.org/community/labs/colorado04

