
Hubey                                                      Comparative Method                                Page  1 of 43                                 8/11/99

 The Comparative Method
by

H.M. Hubey

Abstract
A thorough overview of the problems, assumptions and methods of comparative linguistics is
given. It is shown that the concept of distance (or its inverse similarity) is of paramount concern
both for phonological and semantic aspects of the comparative method. Different distance met-
rics, their results and their relationships to the heuristic and intuitive comparative method is
shown. The importance of basic vocabulary, and the formalization of such concepts in the form of
Swadesh-like lists is demonstrated and explained. Relationships of distinctive features, shared
innovations and shared retentions in family trees is discussed in terms of distance and similarity.
The role of regular sound change, its meaning,  its importance, and its heuristic value as mani-
fested in various distance metrics is demonstrated.

1. The Comparative Method

It is obvious that the method compares sets of morphemes (bound morphemes or free mor-
phemes) from two languages to each other. The question of which morphemes are compared, and
how the results are evaluated are often left foggy. It is taught via example which leaves students
wondering exactly which parts of the method are salient. What is done is that the degree of simi-
larity (both semantically and phonologically) between a specific set of morphemes chosen
according to some assumptions is then judged (again fuzzily) and the final result is again evalu-
ated. Among the set of procedures are phrases such as “regular sound correspondence”, “cog-
nate”, “nursery words”, and “basic vocabulary”. These will be discussed as they are relevant to
the comparative method or the historical method. The similarity (often “phonetic similarity”) is
the inverse of “distance”, and mathematical spaces that have a distance defined on them are called
metric spaces. Therefore here we will use only the concept of distance since the concept of simi-
larity is derivable from it rather easily. For example, if d(x,y) is the distance between x and y, then
we can easily relate similarity s(x,y) to distance as s(x,y)=1-d(x,y). It should be noted here that the
similarity and distance are”normalized” in that maximum allowable value is 1, and the minium is
0. Therefore if d(x,y)=0, it means that x and y are identical, hence for any variable z, d(z,z)=0. It
is easily seen that s(z,z)=1 or z is maximally similar to itself (i.e. identical). An alleged metric, or
measurement scale (please see the appendix) which cannot discriminate an identity is surely very
much suspect. What good is a thermometer that cannot measure a given temperature correctly
twice i.e. is not reliable (see the appendices on measurement theory).

Thus we can work with the concept of distance itself like the rest of the mathematical sciences.
Semantic distance will be extremely difficult to define except using some fuzzy measures; Zadeh
intended fuzzy logic especially for the social sciences, especially to be used in senses in which we
can make distinctions such as hot, very hot, somewhat hot, not hot, not too hot, warm, very warm,
cold, not very cold, etc. As for phonetic. phonological, acoustic, perceptual, sound distances,
there are many ways in which can be accomplished. Here the word “signal” will be used since it is
a representation of the acoustic manifestation of what we say are “speech sounds”; phonetic and
phonological are essentially high and low resolution depictions of the same, and perceptual dis-
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tance is already implicitly used in making these low/hi resolution representations of speech
sounds. Furthermore, there is nothing to stop anyone from using any of the distance measures
used on the signal in many speech recognition programs many of which are already commercially
available at commodity prices.

Define  to be the jth morpheme of language alpha (α). Then we define  to be

the signal distance between the jth morpheme of the alpha language and the kth morpheme of the
beta language. This distance can be obtained from the distances between the phonemes as a low
resolution distance in many ways, including the simplest such distance, Hamming distance as
used in Hubey [1998]. Other more sophisticated and more realistic distances can also be seen in
Hubey[1994].

Similarly define  to be the semantic distance between these morphemes. The com-

parative method works by comparing the (bound and/or free) morphemes of two languages and is
semantically driven. To see what these mean, let us examine special cases.  As an example, let us
use English as a metalanguage and try “dog” in some virtual language family X. Suppose we have

several words with this meaning in two languages; the set  in language A and

the set   in language B. Which ones do we choose to be in the list i.e. the

set of comparanda? We can represent this situation as a bipartite graph as shown in Figure I. 

A complete bipartite graph Kn,m is a graph whose vertex/node set is divided into two mutually
exclusive sets such that there is an edge between every pair of vertices between these sets. Obvi-
ously  Kn,m has mn edges. We must choose one of these edges which represent the relation
“potential cognate”. On what basis do we make this decision? The fuzzy answer is that we try
somehow to minimize the semantic distance but also the signal distance. For example, if we are
given the choices {aka, aba, utu, opo} in one language and {akka, kabar, zultar} in another lan-
guage, even if aka meant ‘dog’ and akka meant ‘wolf’ and even if zultar meant dog we might be
tempted to select {aka,akka} as the potential cognate pair. In this case we are making an attempt
to minimize some function of both the signal and the semantic distance. Therefore our algorithm

minimizes some function  of the semantic and signal distances
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so that when we have actually chosen our potential cognate pair this function is minimized for
that specific pair. This part of the algorithm is purposely left foggy because it is exactly that way
in real life as practiced by real linguists. Despite denials that they indulge in no such thing, it is
quite easily discernable from the examples in books that something along these lines is attempted,
and indeed,  there is no other way.
Since we have now made the procedure explicit, at least to a degree, it will now be easier for those
using the comparative method to either clarify what algorithm to use or for empiricists to study
what has been done and attempt to obtain what algorithm is actually (and implicitly) in use.

Suppose we compare some language gamma (γ) to  language to itself, i.e a dialect of itself. Then

we would be comparing the “corresponding” morphemes  where “correspondence”

here is driven by semantics meaning that we index the words using the semantics. In other words

we might say that we select morphemes such that  and

.Obviously if we compared the same dialect to itself the distances

would be identical and hence  we would have exact equivalence, instead of approximate equival-

nence thus we would have  and .

There are, of course, apparent problems with this scenario. One of them is that the term ‘cognate’
is apparently not defined in terms of distance (or its inverse similarity) but in terms of something
else, corresponding phonemes. This is a problem of ‘multiple scales’ and of measurement the-
ory... There are similar problems in other sciences. For example, in problems of intelligence, the
brain to body ratio (b/B) correlates very well with intelligence when it is applied over a large
scale, from the lower order animals up to humans, but fails to be significant when only humans
are being considered. We can see here that signal and semantic distance is highly correlated with
geneticity when the same language or dialects of the same language or very closely related lan-
guages are being compared but apparently fails to be germane when distantly related languages
are being compared. This will be treated at the end after other problems of the comparative
method are outlined and the algorithm given, and more and related complexity is discussed. A
related problem is that of  shared features, retention of features and parallel development. Obvi-
ously these ideas are related to those of cladistics in biology. Just as obviously, it will add even
more complexity to the comparative method and cannot be discussed until at least the complete
(even if simple) algorithm is given and discussed.

2. The List

We now apparently know how to choose potential cognate pairs. There are still more complica-
tions which will be evident when we try to create a whole list of such pairs. Which and what kinds
of words (morphemes) do we use for our test and how many of these shall we have? Obviously,
there are some assumptions that go into this method. We might think that more the merrier and
choose the whole language. In the case of comparing dialects or the language to itself, there is no
difference for all practical purposes. However the phenomenon of copying (also known as bor-
rowing) complicates the situation since some of the words (free morphemes usually) might have
come from another language. Regular sound change will not resolve this problem since even cop-
ied/borrowed words show regular sound patterns. The assumption is that some words “basic
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vocabulary” (BV) are resistant to copying and thus they should be used. It is here that we are
faced with the problem of BV. How do we choose these words?  Here we see more complexity in
choosing potential cognate pairs, and also the BV. Suppose both the word for ‘wolf’ and ‘dog’
were to be included in the BV. Then it is obvious that we cannot initially separate the potential
words into two sets and then try the algorithm above, since we might decide to match up ‘wolf’ in
one language with ‘dog’ in another language. We would have to consider both sets together and
maximize or minimize some function of both the signal and the semantic distance. Therefore
although the general idea of computing distances and comparing morphemes to each other holds
we have to consider the whole BV set together, however it could be done in several stages. In the
first stage we can treat the semantically-driven matchings independently of each other, and to do
that we have to make sure that we select a set of words which are maximally semantically distinct
from each other. The Swadesh list is a formalization of this concept. It is supposed to be a set of
words that are (i) semantically distinct (i.e. large semantic distances amongst the words) and (ii) at
the same time words that are resistant to copying by other languages. 

(i) The first part is relatively easy to state assuming that we have the required semantic distances.
Compute the semantic distance between every pair of words in the set, and then maximize some
function of these distances. Therefore a simple example of such an operation is to Maximize

. The superscript m merely denotes that this is being done in a metalanguage and

i<j denotes the fact that we do not consider the case i=j and that the distance measure is symmetric
so we need only compute the distance for only a single occurrence of given i and j. For N words
we will have to compute N(N+1)/2 such distances. We could decide that we want to Maximize

, or we might try exponential or logarithmic forms. A simple heuristic algorithm

for selecting m words(the list) from n words(the complete language) would be to start with the
complete graph of the n words in which each edge weight is the inverse semantic distance(i.e.
similarity) sij between the words. We would then sum up the edge weights for each node (word)

. Then we would successively delete the node with the largest Sj until we are left with

only m words. The algorithm is given in Appendix A.

(ii) How do we justify that assumption that some words are resistant to copying? The general
belief is that some words, such as hi-tech words, are easily borrowed, and that they should not be
used in comparison tests. However, there were probably technology words during many periods
of human history. Even the pronouns could have been copied at some distant time in the past.
Innovation is an extremely difficult thing in every aspect of life, and it is much easier to recognize
a good solution to a problem and to copy than it is to innovate; this must never be forgotten. Even
morphological and syntactic forms can be copied from other languages [Thomasen & Kauf-
man,1988]. As unbelievable as it might sound, the alleged resistance of some words to copying is
essentially circular. It came out of the study of the IE language family. In order to claim that these
languages constitute a family, we have to see that some of these words from the set of basic
vocabulary resemble each other across a variety of languages both in semantics and in the signal
shape/form. Therefore it was the acceptance of the IE family based on these resemblances (i.e.
small distances) that gave rise to the acceptance of the belief that some words are resistant to
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copying/borrowing. Lest this sound uncharitable, we should note that although it adds more com-
plication, the truth is closer to the explanation that both of them occurred together and positively
influenced each other. In that sense they are inseparable. Therefore we have two assumptions;

I.)  The BV comparison does not display great changes and is resistant to copying. (How do we
know this? Why,of course, in the so-called IE languages which we know constitute a family by
(II), the BV does not show any great changes, actually less changes than some of the other words).

II). The so-called IE languages constitute a family. (How do we know this? Why, of course,
because the BV of the IE language family does not show great changes and this implies by (I) that
these languages constitute a family.)

It is certainly internally consistent. But so are these two statements:

i) I am Napoleon and this person here is General Marat.
ii) Yes, I am General Marat and this person here, I testify, is Napoleon.

Now, consistency is something demanded of axiomatic, or formal systems of mathematics, but
more is demanded of other sciences; they must also be in agreement with reality. In the physical
sciences we can test [consistent] mathematical models to see which ones are in concordance with
the facts. In historical linguistics we can only know about a few thousand years of recorded his-
tory much of which is still shrouded in mystery. The only thing we can know for sure, and which
we can use is that certain events are too improbable to have occurred due to chance and thus are
likely due to some other process. Large number of concordances of words (morphemes) between
sets of languages cannot be due to chance and hence are due to either copying from each other or
descent from a common ancestral language (knowing full well that even borrowed words are
descended from a common ancestral language). First we have to compute what “large number of
concordances” are. In other words we need to have numbers (that can be seen in many places,
some simple, some sophisticated and some incorrect, for example, Bender [1962], Cowan[1962],
Ringe[1992,1995], Hubey[1994,1999a]). Secondly, we have to clarify what it means to be
descended from a common ancestral language. After all, language is something like an infection
or genes that is carried by humans. It is not easy to think only about an abstract concept called lan-
guage without making use of abstract tools of mathematics. Therefore since there is so much writ-
ing already available in IE and AA languages, they will have to be used as test beds for
mathematical models of historical linguistics. 

Furthermore, it is not completely true that the statements above are circular, or they can be made
so that they are not circular. To conduct a proper experiment we’d have to trace at least a single
family which has enough writing (a dictionary would be best) over many centuries so we can ver-
ify that at least in the case of this family some words do not get copied. In order to have sufficient
belief in the assumption of resistance, we would have to verify this for many languages. Suppose
we traced say, Latin and its derivatives (descendants and others that copied words from it, and
also languages which eventually came to be replaced by Latin because the speakers were incorpo-
rated into the Roman Empire) and quantify how much change occurred in both the meanings and
the signals of the morphemes. Where does copying end, and where does the copying language
change sufficiently to be in the Latin (Italic, Romance, etc) family? We would need to use many
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other examples, as well, in order to have reasonable confidence, at least a quantifiable confidence,
in what words are best suited to be included in the BV, and also what kinds of mathematical mod-
els best describe the historical processes of languages. Much of what has been said already can be
formalized into such models, and has been done already [Hubey,1999a]. Also related to this prob-
lem is that of ‘nursery talk’ which alleges that some signal forms exist accross many languages
because they are invented by children (like onomotopeic words) and that they should not be used.
Psychological experiments show that the opposite is true since infants are exposed to their
mother’s voice even in the womb, and are capable of discriminating the sounds and words of their
native languages within weeks or months after birth, hence the infants are imitating the words
which they have heard from their parents[Hauser,1997, USNWR,1998]. Even more material on
this topic can be found in Jablonski and Aiello[1998]. Furthermore it is still a topic of heated dis-
cussion in the psychological sciences as can be seen in [Marcus, et al,1999]. These are probably
the strongest evidence for protoworld of some sorts since words like {ata,ana,ati,...} now cannot
be summarily dismissed and curious minds will want to know why Hittite has ‘atta’ and ‘anna’ for
father and mother, and why the Karachay-Balkar [Kipchak] language of the North Caucasus has
the ‘parental words’ {ata,ana, atta,anna,appa,akka, amma}.

3. Shared Innovations and Shared Retentions: possibly more red herrings

Even after the resolution of the problems of how to select the words for comparison, and deciding
what kind of a distance metric to use, and what words to avoid and what not to avoid, we are still
faced with problems on a larger scale. Eventually, after the analysis we will have accumulated
some processed data which we can use. Let us call these ‘features’ or ‘distinctive features’ of the
languages in question. We still have to somehow make use of these features to create a family-
descent tree. To know what to do with real data, we should first decide what we would notice in
cases in which we already knew the answer. Suppose we have the distinctive features of the proto-
language and its two daughter languages A, and B. We can write these as  vectors;

3.1)                       ,   ,     ,   

The protolanguage has six features represented by the letters as shown. Wherever we see the same
symbol in A or B it means that these are retentions. The symbols with subscripts are innovations,
thus b1 is a shared innovation since both A and B possess it. Similarly g is a shared retention since
it is retained exactly as it is in the protolanguage. Now we can compute distances based on the dis-
tinctive features quite easily using the metric discussed in Hubey[1998] and Hubey[1994];
d(P,A)=5, d(P,B)=5, d(P,C)=5, d(A,B)=4, d(A,C)=4, d(B,C)=2. We should note that this is not
normalized distance as in Hubey[1998] or as in the appendix. So far it looks like B and C should
be in the same family since the distance between them is the minimum of the distances amongst
the daughter languages. For this case we can also compute the shared retentions between lan-
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guages also R(A,B)=1, R(A,C)=1, and R(B,C)=2. However we should note that if we  had only
the daughter languages and were faced with this problem creating a family tree or reconstructing
the protolanguage we would not be able to compute the shared retentions at all. In this case, we
can also compute the shared innovations, which is also a kind of distance, I(A,B)=2, I(A,C)=2,
and I(B,C)=3. When we create a family, we are making a statement that these languages in the
same family are closer to each other than to those outside the family. According to the distances,
B and C are closer and hence should be in one [sub]family. Since the number of shared innova-
tions is also considered to be what determines how family trees are constructed, seeing that the
number of shared innovations is highest between B and C, we are again prodded to put these two
languages into the [sub]same family. Now as the shared innovations distance increases the dis-
tance between the languages becomes smaller and thus makes the languages ‘closer’. Let us look
at another example, where the languages share no features at all as shown below

3.2)            ,   ,     ,   

Now the daughter languages share nothing, i.e I(A,B)=I(A,C)=I(B,C)=0.  The distances are given
by d(A,B)==d(A,C)=d(B,C)=7. We note that we should use normalized distances so that the num-
bers are in the interval [0,1] so that language families can be compared to each other. Suppose
now we change one of the features in one of the languages to match another language’s feature.
For example, change a2 in B to a1. Immediately, the distance is decremented by one and the
shared innovations is incremented by 1, thus d(A,B)=6, and I(A,B)=1. The same holds for any
feature between any pair of languages. Now suppose we have some retentions as below

3.3)                                ,   ,     ,   

Then the distances are d(A,B)=d(A,C)=d(B,C)=5, and the shared innovations still remain as
I(A,B)=I(A,C)=I(B,C)=0 but the shared retentions have  increased; R(A,B)=R(A,C)=R(B,C)=2.
Both the shared retentions and the shared innovations make languages similar to each other.
Hence with an increase in SI and SR, similarity increases and distance decreases. Therefore
instead of the relationship d(x,y) + s(x,y)=1, in this case (since we are not using normalized dis-
tances yet) we have the identity
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3.4)                        D(X,Y) + I(X,Y) + R(X,Y) = N 

where N is the number of distinctive features and S(X,Y)=I(X,Y)+R(X,Y). To make this equation
normalized we only need to divide everything by N.  If we now change say c2 in B to c1, then
D(A,B) decreases by one, and I(A,B) increases by one, thus the accounting equation remains
valid. We can write this equation as

3.5)                        D(X,Y) + I(X,Y) = N−R(X,Y)

The increase/decrease in D(X,Y) results in decrease/increase in I(X,Y). The total number of dis-
tinctive features of the protolanguage is constant, therefore if the number of shared retentions
changes on the right hand side, there must be a corresponding change on the left hand side mean-
ing that if a shared retention is no longer shared, then it is either a shared innovation so that I(X,Y)
increases or it is not in which case D(X,Y) increases. Therefore, we can use either I(X,Y) or
D(X,Y) in our determination of family relationships. Of course, if we are attempting to recon-
struct a language or create a family tree, we first determine N, i.e. in how many features do the
languages in question vary. This is, in effect, the distinctive features space of the language fam-
ily.Indeed we do not really know how many features the language should have we only notice the
number of changes amongst the languages. The only way we can tell what N was would be by
comparing this language family to another language family. Let us now consider the last case
except without the protolanguage since this is the typical situation.

3.6)                    ,     ,   

Now it is obvious that the features shared by all the languages would never have been noticed
except when comparing this to some other language family. Therefore we would have really only
been able to notice

3.7)                      ,     ,   

This means that the only really relevant part of the equation should be

3.8) I(X,Y) + D(X,Y) = M = constant    or         I(X,Y)= M−D(X,Y)   
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if we did know (somehow) which features are innovations and which are retentions. But it seems
that this stage has to follow earlier stages in which we first attempt to create families or subfami-
lies. In that case, just as we can use shared innovations to create a subfamily, we are also forced to
use shared retentions to create subfamilies exactly because those languages which have still
retained features are still close to each other, after all before the innovations they were all one lan-
guage. Pronouncements to the effect that shared retentions are not important cannot be correct.
All we can see so far is that it is distance that matters, since the shared innovations can be
obtained from it. But since distance also reflects shared retentions and shared innovations it also
reflects genetic relationships. The only time shared retentions can be important is to determine the
direction of the genetic links in time, that is basically all. But all of this is only for pairs of lan-
guages and not for a set of languages and so far we have not yet finished the comparative method
algorithm. Suppose now, instead of the case in eq. (3.6) in which every daughter shared the reten-
tions a and b, we have the situation as below in which B and C share the retention a and A and C
share the retention b but that we do not know which are retentions and which are innovations.

3.9)                          ,     ,   

Since we don’t know the form of the protolanguage we cannot tell which of these features are
retentions and which are innovations. The computations are now D(A,B)=6, D(A,C)=6, and
D(B,C)=6. They are all equidistant from each other. The shared innovations have not changed
from the previous case so the shared innovations (if we knew them) I(A,B)=I(A,C)=I(B,C)=0 also
would tell us that they are equidistant. As can be seen if the shared innovations between any two
of the descendants increases it would do so at the expense of the shared retentions thus an increase
in one (shared innovations)  would imply a decrease in the other (distance). Suppose we have the
situation as below

                  ,     ,   ,  

If we did not know anything about the protolanguage, we could not know if the feature a (in C and
D) or feature b (in B and D) is an innovation or retention (or indeed parallel development having
nothing to do with descent). However, in both cases we can still use the concept of distance to
compute distances. Now, even as we see that C and D share feature a as a retention, it is still a fact
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that they are closer to each other because of it and hence this closeness still has to be accounted
for in the generation of family trees. All we can see is that unless there is parallel convergence, A
and B seem to have innovated a1, but then C, and D exactly because they have not innovated fea-
ture a must still be considered to be in the same subfamily. After all, if the protolanguage did not
itself constitute a family what is the point of historical linguistics? To see why this must be so,
consider some language (which is a potential protolanguage since every language is). Let the
number of features of some protolanguage be N. Split the speakers of this language into M groups
physically so that any innovations will not spread across the protolanguage but will only remain
withinthe isolated group. Now at this point in time, these languages(!) still constitute a single lan-
guage because they still retain (!) all the features of this language. Of course, unless the speakers
of this language fell from the sky, it split off from another language so that these shared retentions
are then shared innovations from the perspective of the sisters of the protolanguage. At this point
how can we tell that these languages constitute a language family (and they do) if we look only
for shared innovations in the restricted (and common sense) in linguistics? Obviously there are no
shared innovations and thus we’d be forced into the ridiculous conclusion that they are not
related. This is essentially the reason why Ringe’s method [1992,1995] would produce a ridicu-
lous result that English is not genetically related to English [see Hubey[1999a]]. But if we stick to
the general (and correct) reasoning that distance (or its inverse similarity) determines genetic rela-
tionships, then we will have no problem at all in determining that these languages are indeed a
family (i.e. the same language). 

There is probably some resistance or incredulousness among those who are not trained in any of
the mathematical sciences to say that a language is really a language family. However, problems
of this type occurred many centuries ago, and such obstinacies were all given up eventually. For
centuries zero was not considered to be a number. How is it possible for something that does not
exist to be anything at all? But zero is a number, and so are negative numbers and imaginary num-
bers. If not, then students get confused, for example, with the fact that “velocity is constant” also
applies to bodies at rest (i.e. velocity zero). It does not mean “velocity does not exist” which some
students attempt and get confused as a result. It means velocity is zero. Exactly similar reasoning
applies in logic and with which students (and not only students) also have many problems. For
example, a statement such as “all pink elephants taller than 100 feet are sterile” is usually thought
to be a false statement. However in logic, this is a true statement. It is so, because no such ele-
phant can be found, and if there is no counterexample to an assertion, the statement cannot be
shown to be false. In bivalent logic, whatever is not false is true, therefore something that cannot
possibly be false, then must be true [see for example, Hubey[1999]]. This is also the reason why
‘falsificationism’ (vigorously defended by the philosopher Popper) is now at the root of philoso-
phy of science. That is also why a method that claims to determine geneticity of two languages
can and must be submitted to a test in which we can see if it can determine whether the two lan-
guages are really the same language. In the same way, a language is itself a language family since
if n languages can constitute a language (sub)family, so can 1 language. All the features of this
single-language family are retentions, and distances are zero. At the same time all of these shared
retentions are shared innovations which differentiate it from its sister languages. If all we have are
some languages which we think are genetically related, then all we have is distance, and it was
distance that was used in Hubey[1998].  Suppose now that the situation after some time, where
N=7 and M=7 is as below 
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Would anyone seriously argue that the set of languages {A,B,C} should not be put into a subfam-
ily because they share no innovations? What they have are shared retentions, but according to
some linguists (who have tried to import the cladistics idea --itself a fuzzy concept-- from biol-
ogy), these features should not be used to create (sub)families. They certainly do constitute a
(sub)family, because they are still a lot like the protolanguage because they still retain 5 out of the
7 features of the protolanguage. Is it possible to argue that a language (e.g. the protolanguage) is
not genetically related to itself? This is the same problem as in Ringe method; can a language not
be genetically related to itself? Now, the rest of the languages do have shared innovations so those
can be used to determine their relationship to each other, but in both cases we see that it is really
the degree of similarity (or distance) that we use for genetic determination. The innovations and
retentions would, of course, be used in the determination of what the protolanguage looked like,
so that if the family tree is a digraph (directed graph) then the retentions and innovations will be
used to determine the direction of arrows (and thus time). It is easy to produce a tree from dis-
tances between languages. The example from IE from Hubey[1998] is repeated below in Figure 2.
It was left this way purposefully because the knowledge that is necessary to produce a family tree
where we note ancestry is not available in the features, but additional information and assump-
tions are necessary.
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Figure 2: Trees of the Indo-European Family: (a) The Minimal Spanning Tree, (b) a Branching Tree.
Note that no node has been identified as a “root” in the spanning tree. Since in graphs only connectivity
matters, the graph (a) is equivalent to the one in Hubey[1998]. To create a branching family-descent tree
more assumptions or rules in the heuristics are needed. Such a branching tree should resemble some-
thing like that in (b). Knowledge outside of linguistics was used to select Hittite near the root of the tree. 
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4. Regular Sound Change

The only heuristic which historical linguists seem to be able to agree upon is that of “regular
sound change”. How valuable is it really, and how significant is it? The detailed and rigorous
answers and a research programme can be found in Hubey[1999a]. Here simple analogical argu-
ments will be used. First everyone is familiar with the Birthday Problem, that of determining the
probability that at least two persons will have the same birthday among a group of persons of size
n. The answer is that the odds are approximately 50-50 that at least two persons have the same
birthday when n=23. Similarly if we find 23 putative cognate sets, and use only about 19 conso-
nants (so that there are about 365 possible sound changes) then the odds are again approximately
50-50 that at least one of those sound changes will be repeated and hence will constitute a regular
sound change. With say 200 putative cognates many of the sound changes will be repeated, there-
fore the regularity of sound change is really a side effect of quantity.  The case in which the heu-
ristic is very significant is when the number of comparanda is small. The use of rigorous
mathematical methods (e.g probability theory) will prevent the use of needless argument over
heuristics. However it is possible to use the concept “regular sound change” without the explicit
use of probability theory and as a part of the determination of “distance”. Intuitively, we can see
that a high degree of regular sound change is something whose probability of occurrence is lower
than that of many different kinds of sound change, thus it is a heuristic that is in some ways a sub-
stitute for probability theory. It has been used as a type of distance in the works of Raman[....] in
which the number of phonological changes required to change a word into another word is used as
a distance metric. This is simply another way of determining the Hamming distance since it would
take that many changes to make two words identical. It can be used in conjunction with the con-
cept of distance in two ways. 

(I) First, the number of regular sound changes can be used on one of the sets of the comparanda
before the distances are computed, and used to modify the distance computation. For example,
suppose that we are comparing three languages X,Y,Z. Suppose further that the distances amongst
the languages according to some metric are equal. If, however, after making some sound changes
in one set, say according to N sound change rules, d(X,Y) is much less than d(X,Z) we can use
this to infer that X and Y should probably be placed in a subfamily. 

(II) Second way in which regularity of sound change would be to use some phonology space (see
for example, Hubey[1999]) to create distances amongst sounds so that the metric is better suited
than the simplest metric in which each sound change in a word counts equal whereas we might
want to assign higher value for the change p>h than p>b using a heuristic that p!h was probably
realized something like p!k!x!h. The latter would take longer to accomplish and thus should
automatically imply a longer time horizon. 

(III) Third way we can use regularity of sound change would be to further refine the first in using
the number of regular sound changes to modify the distances computed. In this we would use (a)
the principle that regular sound changes imply greater affinity and therefore those pairs of lan-
guages that can be brought closer together after regular sound changes should be considered to be
more closely related than those without, and (b) those pairs of languages that can be brought
closer together with a smaller number of regular sound changes are displaying a closer affinity
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than those that require a larger number of sound changes. All of these are based on a simple
assumption that longer time periods create greater distances amongst languages, especially if they 
are geographically separated. An example of some distance metrics is given below in Table I. 

There are other considerations as well in Table I; in order to be able to use a weighting scheme as
in H4 we need to know what phonemes were the earliest developed and these can go back as far as
hundreds of thousands of years. Since we do not have access to such knowledge, we might make
yet another assumption. We might borrow another concept from biology; the earliest sounds in
use among humans might have traveled the same route as that children follow when learning their
language’s phonemes. Furthermore phonemes that are observed in almost all of the world’s lan-
guages probably have been in existence the longest. These are /ptksn/, and the vowels /iua/ exist
in almost all of the world’s languages with the possible exception of Kabardian. The reasons for
the development of these particular sounds is easily explicable (see Hubey[1994] or
Hubey[1999b]). They are merely ways of dividing up the available phonological space so that
they are maximally distinct. For example, the earliest sounds infants develop is a centralized lax
vowel like an [a] and a bilabial like [p],[b] or [m]. The vowel can be produced when the articula-
tors and particularly the tongue is in a relaxed position. The bilabial is visible, and is probably
something the infant notices when people are talking.

Table 1: 

Distance or weighting description Case 1 Case 2 Case 3

Suppose we find these changes in a small sample of text. 
How shall we use a signal (phonetic/phonological) distance 
that is harmonious with linguistics sense.

pan!man
pas!mas
pat!mat
par!mar

pan!man
pas!bas
pat!wat
par!far

pan!gan
pas!ras
pat!kat
par!dar

H0 Every sound change is equal i.e. each sound change gets 1 pt. 4 4 4

H1 Number of distinct sound changes 1 4 4

H2 Additive Combination; H0+H1 5 8 8

H3 Multiplicative Combination; H0*H1 4 16 16

H4 Each different sound change gets a weight * 1 4 >4

H5 Additive Combination; H0+H4 5 8 >8

H6 Multiplicative Combination; H0*H4 4 16 >16

* The changes {b !m, b!p, b!w, b !f}   in Case 2 all involve bilabi-
als and probably are smaller scale changes than the set of  changes 
{b!g,   b!r,b "k,b!d}. For example some of these changes, if they 
really were endogeneous changes, might have gone thru stages such as  

p!ph!f!h!0, or p!t!k!g and might be considered to be indica-
tive of temporal distance. These distances are only suggestive. They 
should also be normalized.
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5. Reconstruction and Geneticity

There is an often repeated refrain that geneticity cannot be determined without having recon-
structed the protolanguage. Let’s indicate ith sound change from the set of basic words of a

daughter language, D1 to its protolanguage LP, by Pi
d i=1,2,3,..n. Therefore if we apply all of these

relations one after another, we can then transform the words of D1 in the list to the words of the
other (presumably related) language. Since relations are associative (see appendix), we can
denote the composition of all of these changes (relations) as P. Suppose similarly that relation Q
relates a second daughter language D2 to LP. This situation can be seen in the diagram on Figure 3.
Under the neogrammarian assumption, we should be able to obtain the original words of the pro-
tolanguage if the relation is invertible. Therefore, we can then attempt to reconstruct the protolan-
guage from a set of such relations. It should not be a surprise, therefore, that we should be able to
find that the changes from language D1 to D2 are also regular. In other words LP=P(D1) and

LP=Q(D2). If both relations are invertible then D1=P-1(Q(D2)) and D2=Q-1(P(D1)) where Q-1 and

P-1 are the inverse relations. Intuitively it is clear why this must be so (within some practical lim-
its). After all, the protolanguage itself is reconstructed from the daughter languages, therefore the
sound changes, and the putative sounds of the original protolanguage are also derived from the
raw data in the form of the daughter languages. Furthermore, there must at least be a tacit accep-
tance of the existence of the family before reconstruction is attempted since everything about the
protolanguage depends on the languages which are accepted to be daughter languages. We should
note that the relations P and Q are the actual sound changes from the daughter languages to the
protolanguage. However, the general and abstract relation “regular sound change” (i.e. a rule
based set of changes) is a symmetric relation. If there are a set of rules that that we can use to
change one set of words to another, then there are rules that will allow us to change in the other
direction. It should be noted that this concept is not about the real and practical aspects of recon-
structing a language. The description is about a situation in which we were in possession of such 

rules. Obviously, reconstruction is a manifestation of a particular set of rules that has been
deduced from the evidence of daughter languages. Thus it is merely another aspect of the relation-
ship of the daughter languages to each other. Therefore in considering only the relation of “regular
sound change”, it is clear that it is a symmetric relation as in Figure 3.c. Therefore the relation, R,
(regular sound change) is also transitive (dotted lines in Figure 3.c). As is obvious, there is no rea-
son in principle why geneticity calculations and algorithms cannot be based on the putative
daughter languages, as indeed is done in real life applications of the comparative method.

LP

D1 D2

P Q

Figure 3: Regular Sound Change Relations: The ‘regular sound change’ relation is symmetric and tran-
sitive as in (c).

D1
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P
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1–

LP
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6. The Comparison Algorithm

Nobody really knows how the human brain manages to spot resemblances or how it stores them
although there are theories. The closest we have come to modeling the functioning of the brain
seems to be in the workings of artificial neural networks. But it is not necessary for computer pro-
grams to duplicate the functioning of the human brain. Typically, if one is reading about a list of
words of closely related languages or dialects, the semantic distances are already zero or close to
zero, and the signal distances are also small. Then the algorithm to be followed by the reader is
that which will confirm or verify that the phonological distances are small.

MinDistance =0 
TotalDistance =0 
FOR  µ=1 To LastWord DO

 Distance= 

 TotalDistance= TotalDistance + Distance
NEXT µ

First we see that we might have done the calculation as ‘TotalDistance= TotalDistance*Distance’
instead of additively. Furthermore, both the additive and the multiplicative versions as specific
examples of a distance metric between the two lists; they are merely the simplest versions. In this
case, we do not really have to do any comparisons since this this list presumably has already been
prepared for the reader and already passed the test. There could be a confirmatory test by using an
idea due to Oswalt [see further below]. One can do a modulo shift of one of the lists and then
recompute the distances and verify that for each shift the TotalDistance is greater than for the cor-
rect matching.  If we wanted to test two languages, we would first have to create a list of com-
paranda, and in the creation of this list we would be guided by the ideas discussed, mainly that of
the ‘basic vocabulary’ list. If we are given many potential words for every word in the BV, then
we would have to have the computation include the selection of the words for the list while we are
also testing the words. One way to proceed would be to first go through the list and compute some
distance metric for the list from the first element in each set of putative cognates. For example, if
for the first semantic concept we have n words from the first language and m words from the sec-
ond language, we would compute a distance metric from the first word in each list. We would do
the same thing for each semantic concept on the list. This is easily accomplished by the algorithm

GetFirstWordInEachList;
FOR SemanticConcept=FirstConcept to LastConcept DO
         ComputeDistanceBetweenTheFirstWords;
        D[SemanticConcept]= StoreDistance(SemanticConcept);
        TotalDistance=TotalDistance + Distance
        GetNextWordInNextSemanticConceptInEachList;
NEXT SemanticConcept

After this TotalDistance is computed, we assign this to a MinimumTotalDistance and then per-
mute the words in the list and compute new distance for each semantic concept. If this new dis-
tance for this semantic concept is less than the previous distance for this semantic concept, we

dp Mµ
a

Mµ
b,( )
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substitute this distance for the older one, subtract the old distance from the MinimumTotalDis-
tance, and add the new distance to the MinimumTotalDistance. 

MinimumTotalDistance=TotalDistance
FOR SemanticConcept=1 to LastConcept DO

REPEAT
GetNewWordInSemanticConceptInList1;
REPEAT

GetNewWordInSemanticConceptInList2;
 X=ComputeNewDistance(WordInList1,WordInList2);

IF (X<D[SemanticConcept]) THEN 
  {MinimumTotalDistance=MinimumTotalDistance+X-D[SemanticConcept];
   D[SemanticConcept] = X;}
UNTIL (NoMoreWordsInSemanticConceptInList2)

UNTIL (NoMoreWordsInSemanticConceptInList1)
NEXT SemanticConcept;

It should be noted that this works after some preprocessing. In other words, the basic semantic
concepts must already be in place, and the possible cognates for each semantic concept have
already been listed, and most importantly each such word is assigned to only one semantic con-
cept slot. If that is not the case, then we need to check the solution to make sure that the same
word has not been used twice in the minimization of total distance. In the case that words have
been assigned to multiple semantic concept slots, we need another algorithm, one that checks
every possibility. In this case we would still start off with some TotalDistance which would be
quite arbitrary, and then we would go through every permutation of the words to minimize a total
distance. A brute-force approach to this problem would be;

MinimumTotalDistance=TotalDistance
FOR SemanticConcept=FirstConcept to LastConcept DO

REPEAT
GetNextWordInSemanticConceptInList1;
REPEAT
  GetNextWordInList2;

 X=ComputeNewDistance(WordInList1,WordInList2);
IF (X<D[SemanticConcept]) THEN 

      {MinimumTotalDistance=MinimumTotalDistance+X-D[SemanticConcept];
       D[SemanticConcept] = X;}
UNTIL (NoMoreWordsInList2)

UNTIL (NoMoreWordsInSemanticConceptInList1)
NEXT SemanticConcept;

We should note that for each semantic concept, all the words in that semantic concept in List1 is
compared to all the words in List2, so that eventually, everything in List1 will be compared to
everything in List2 and the minimum distance between the lists will be computed. The heuristic of
regular sound change can obviously be exploited here in the computation of distance as shown in
the section regular sound change. Nothing specific about the distance computation is given with
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the exception that the total distance is additive which can obviously be changed to multiplicative
or any other suitable form. The intuitive application of the regular sound change heuristic accom-
plishes what the last algorithm describes. What is left to do now is to decide if the result of the
algorithm can be due to chance. There are many ways of doing this, none of them perfect. The
problems attending such a task have been explained in other places, for example Hubey[1999a],
Embleton[1991], Oswalt[1991], Ringe[1992,1995]. Ringe’s attempt is discussed else-
where[Hubey,1999a]. Here a short discussion of Oswalt’s attempt follows. The problem Oswalt
attempts is a heuristic that compares the result of the best matching of the list (the result of formal
or informal application of the above algorithm) to what he calls the ‘background score’, what
would have been obtained when random matchings are made, a problem which Ringe
[1992,1995,1998] attempted. Oswalt essentially computes the crosscorrelation of the the two lists.
To see how it would work, suppose we have two sequences of numbers of the type [-1,1,1,1,1-1,-
1,-1,1,-1,-1,....] denoted by xi and yi. We compute the crosscorrelation of these sequences as

6.1)                      

The upper limit has been purposefully set to infinity. For applications in real life where the data is
always finite the results will only approximate the conclusions derivable from the infinite case
above. Let us consider a simpler case in which x=y so that we are computing the autocorrelation.
Then we can see that if the numbers are random, the products will always be +1 or -1 and the total
will probably be zero for each k in R(k), with the exception of R(0) which can never be zero since
the products are always (+1)(+1) or (-1)(-1) so that for an infinite sequence R(0) is infinite. For a
finite case R(0) will probably be greater than every k. This is essentially Oswalt’s test. Since the
data is finite the upper limit for k is N-1 where N is the number of pairs being compared. The
comparison is done modulo N thus we should write 

6.2)                            

Therefore if there is any determinism in the putative cognate list, we should obtain a better score
(Oswalt uses similarity, not distance) for  R(0) than for any other case. In the shift test, one can
easily compute the maximum possible value, and thus compare other results to this maximum.
The autocorrelation can be used as a test of randomness[Hubey,1997].

7. Summary & Conclusions

A clear and reasonably thorough although mostly intuitive explication of the comparative method
has been given. A more rigorous discussion would have to make use of probability theory, statisti-
cal testing and stochastic processes. Statistical methods including generalizations of lexicostatisti-
cal and glottochronological ones can be found in Embleton[1991]. It is clear that Oswalt’s [1991]
idea of testing the result of the putative cognates against ‘background’ matching is much better
suited for the task than Ringe’s[1992,1995] attempts whose faults are shown in Hubey[1999a].
Baxter’s criticism[1998] of Oswalt’s shift test [1991] can be overcome quite easily by incorporat-
ing regular sound change into the distance metric as shown in this paper. 
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 Appendix A: Algorithms

An algorithm is a set of step by step instructions for accomplishing a specific task. In the age of
digital computers, the algorithmic way of thinking has become even more important than in the
past. However, it has not become any easier, for like other branches of mathematics, algorithmic
thinking is no more natural than, say, probability theory or even logic. Most people are so accus-
tomed to simply carrying on with their lives without paying much attention to how they do what
they do, that they find it difficult to produce algorithms for things they do every day. One of the
problems is that it does not even occur to them that some things really need an algorithm. Algo-
rithms are generally written using special kinds of languages (pseudo-code) or special types of
symbols. Among the various symbolisms are flow charts, Nassi-Schneiderman charts, syntax
charts, structure charts. In this paper pseudo code will be used because it sits partway between
natural language and procedural computer languages. It is well-known that programs can be writ-
ten using only three kinds of structures; (i) sequence/statement, (ii) IF...THEN and (ii) LOOP. 
The IF-THEN construction is generall of the form

IF (condition)  THEN
A.1)    Perform_X

ELSE
   Perform_Y.

The condition is some kind of an expression that computes to true (T) or false (F). If during run-
time, the condition is true, then Perform_X is executed, and if the condition is not true then
Perform_Y is executed. Perform_X (and Y) is a set/block of statements which might contain
IF...THEN statements. Probably the three most comon loops are (WHILE...WEND),
(REPEAT...UNTIL), and the (FOR...NEXT). The While loop is a top-test loop therefore the loop
may never get executed. The form of it (in Basic-like syntax) is 

WHILE (condition)
Statement

A.2) .....
Statement.

WEND
...
When the While statement is executed, the condition is tested, and if it is true the loop is entered.
The statements in the loop are executed. When the end of the loop (WEND) is encountered the
execution goes back to the top (While statement) and the condition is tested again. As long as the
condition is true, the body of the loop is executed repeatedly. The Repeat statement gets executed
at least once because this particular loop is tested at the bottom. The syntax is of the form;

REPEAT
Statement

A.3) ...
Statement

UNTIL (condition).
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In this loop, the condition at the bottom is tested after the loop has been executed at least once.
Thus the condition in this loop is really a terminating condition and not a continuation condition
as in the While loop. The For loop is an indexed loop. It is very useful if we want to repeat a set of
operation a known number of times. Its syntax is of form,

FOR index=Begin To End DO
Statement

A.4) ...
Statement

NEXT index

The variable index is initialized to the value Begin, then the loop is executed. When the bottom of
the loop is reached (NEXT statement) then the execution goes back to the top, the index is incre-
mented, and the loop repeated. The loop is repeated until the value of the index reaches the End
value.

Using these constructs we can write a short algorithm, for example, to change every initial letter
of a set of strings (a string of letters, i.e. a word) to the letter ‘A’. We can write this

     Get/Read Word;
WHILE (there are more words)

A.5) Change first letter to A;
Get/Read Word;

WEND
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Appendix B: The Measurement Problem

Dimensions/units: Aside from the basic ideas that we have all seen in high school math  there are
other important ideas. For example, we often need to make things comparable to each other. That
is most easily done if we use numbers. Before we can even do that we have to make sure that the
objects that we deal with are quantifiable in some way and that we can measure them (with num-
ber naturally). 

It turns out that this problem often-stated as "you cannot add apples and oranges" has many facets.
One is that the things we measure in physics (and hence engineering) come in fundamental
dimensions. For example, dimensions of that particular branch of physics called mechanics con-
sists of M {mass}, L {length}, and T {time}. These dimensions are measured in units (which are
almost completely arbitrary). For example length can be measured in inches, feet, centimeters,
kilometers, nanometers etc. Time is measured in seconds, hours, days, years etc. The MLT system
can also be changed to FLT (i.e. force instead of mass because of Newton’s famous law of physics
F=ma). In general systems of units are chosen to make calculations of physical equations simple.
That is the case with the SI (System Internationale). For electrical phenomena we need one more
dimension, Q (charge), and for thermal phenomena we need θ (temperature). Unfortunately, such
a system of dimensions do not seem to exist for any other science except those that can be derived
from physics, such as chemistry, biochemistry, biology etc. However, strangely enough, although
we can multiply quantities of different units (and dimensions) to get other quantities of different
dimensions, we cannot add quantities of different dimensions. We can see the same problem in
economics in which we cannot add the dollar cost (nominal prices) of objects across time, even if
they are all nominally dollars. Instead we add their real values (which we compute by taking into
account other factors such as inflation rate).In physics these ideas are bound up within the concept
of dimensional analysis. Dimensional analysis is a method of reducing the number and complex-
ity of experimental variables which affect a given physical phenomenon, using a sort of compact-
ing technique. If a phenomenon depends upon n dimensional variables, dimensional analysis will
reduce the problem to only k dimensionless variables, where the reduction n-k=1,2,3 or 4 depend-
ing on the problem (phonological space)

Dimensional analysis has other side benefits. One is the savings in money spent on experiments.
The other savings is that it provides scaling laws which tell us how things should change in shape
as their size changes. The method is based on the Principle of Dimensional Homogeneity which
says that any equation that expresses a proper relationship between the variables of a physical
process or system will have each of its additive terms possess the same dimensions. It is based on
Rayleigh’s “method of dimensions” in (Theory of Sound,1887).

Mass and Surface Area

The mass of an animal grows proportional to L3 but its surface area is only proportional to L2.
This has great effect on several things. First, as animals get larger they have to have thicker cross
sections of bones to support all that weight. Second, for falling objects, the drag force is propor-
tional to surface area but gravitational attraction is proportional to mass so that larger objects have
higher terminal velocities. For an average man, the terminal velocity is about 120 mph which
pretty much guarantees that he will sustain a great deal of damage from falls whereas for an insect
the terminal velocity is so small that nothing will happen if thrown out of an airplane high up in
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the sky. Friction is also proportional to velocity so that although we can move through water with
great ease at small velocities, the drag is too large for very small increases in velocity so that a fast
walk through water chest deep is virtually impossible. However, because of the same reasons, a
large animal can shake off the water after a dip in the ocean but a small insect will be weighted
down by a very large weight of water sticking to it in the form of a water droplet. Many other
things having to do with scaling of living things such as metabolism, oxygen consumption, heat
exhaustion, cooling etc. can be found in Schmidt-Nielsen [1984].

Normalization

In addition to problems of different dimensions, we try to change numbers into those in some
standard range so that we can compare them more easily. It would be even better for practical pur-
poses to put numbers into a standard interval [0,1]. This is essentially what is done in probability
theory, fuzzy logic and other fields.

Normalizing Grades on Tests
One way to normalize test grades is simply to divide every grade by the highest

grade in class. This guarantees that the highest grade in class is 1.0. If any student received a zero
for a test, it will still remain zero. The easiest way to grade tests is actually in binary; we just note
if they passed or failed. 

Boxing normalization
In order to be able to compare one boxing match to another a standard scoring sys-

tem is used in which the same number of referees are used to score the bout, and for each round at
least one boxer must be given 10 points.

Extensive-Intensive Variables

It is often remarked in narratives that a fundamental difference exists which can be characterized
by the words quantitative vs. qualitative. Often what is meant by the word qualitative is "inten-
sive" instead of “extensive” since concepts often characterized as a quality can also be quantified.
A state of a system is characterized by a set of parameters. If we split this system in half some of
the parameters will obey X1+X2=Xs and others will obey x1=x2=xs. The former (upper case) are
extensive parameters, and the former intensive parameters. If a system consisting of a lot of
10,000 TVs is split into two sets at random, the quality of the two subsystems will equal each
other and also the quality of the TVs of the whole original system. In a socio-economic system,
inflation rate is an intensive variable, where as total consumption is an extensive variable. In a
language, the lexicon is an extensive variable, whereas the typology, morphology, and syntax are
intensive properties or quantities.

 Gymnastics & Diving
In gymnastics and diving the scoring system is based on 10, but the total score is

obtained by multiplying the raw score by the degree-of-difficulty (an intensive parameter) so we
have something like 
B.1)                                                .

Example

Example

Example

Stotal Sraw Ddifficulty⋅=
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Combined Boyle’s Law and Charles’ Law
These laws are p1V1/T1=p2V2/T2=constant which can also be written as pV=nRT.

These equations display another characteristic of systems in that the product pV is comprised of
an intensive and an extensive parameter which happens often in nature.

Brain and Body Mass
One way to make different animals comparable is to compare not their brain capaci-

ties but the ratio of their brain mass, b, to their body mass B. When this is done there is an almost

straight line (log-log plot). An equation of type ln(b)=αln(B) + ln(γ) is really one of form b=γBα

and many things in nature seem to obey the power laws.

Different kind of normalization
Suppose we want to represent physical agility or physical capability of athletes from various dif-
ferent tests. Suppose we only use three tests; (i)endurance/stamina; (ii) reflex, reaction-time, and
(iii)strength. How should we represent these three qualities (as quantities)? As the simplest such
measure we can simply make three separate bits (i.e. zero or one) which will represent the posses-
sion or lack of the relevant property (such as a pass/fail grade) which we can write as
000,001,010,011,100,101,110, and 111. Or we can decide to give them grades in the normalized
interval [0,1] for each of the three separate tests. Of course, we can easily increase the number of
such tests to five or ten, and we can also increase the dimensionality of the problem but plotting
more than 3 dimensions is very difficult. Hence, it is easy to deal with such high dimensional
problems using only symbols and logic. To continue the example of 3 dimensions, we can make
bar charts, pie charts or we can plot them on a 3-dimensional graph. Then we can represent each
person as a point in three dimensions {x,y,z}. We call such ordered n-tuples or vectors. A vector
is obviously a simpler case of a matrix. It is a 1 by n matrix.

Color Space 
A perfect example of a three dimensional vector of cognitive science is color. As we

know all the colors (for all practical purposes) can be obtained (additively) from the three basic
primaries, Red, Green and Blue, RGB. The gray scale runs from black to white along the diago-
nal. The great advantage of using multiple dimensional space is the accuracy of such representa-
tions of much phenomena. We all know what colors are but they would be virtually impossible to

Example

Example

000

001 011

010

100

101

110

111

strength

stamina

reflex
Figure B:1: Pass/Fail Physical Agility Space: We can define physical ability as some kind of a linear
combination of the three factors. This is another representation of parallelism or simultaneity in (phase)
space.

Example
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explain to someone who was congenitally blind. If we did attempt to "explain" colors by explain-
ing that "black is the absence of color and white is a mixture of all the colors" it is likely that the
blind person would think of colors as what we call "gray scale". 

The primary colors are vectors:

B.2)                                               r= ; g= ; and b= .

Since a vector consists of ordered elements, the first entry refers to redness, second to greenness
and the third to blueness. Thus the red vector r has only a 1 in the redness-place and zeroes else-
where. Similarly for the other primary colors, g, and b. We suspect, then, that the other colors will
be some combination of these primary colors. What this boils down to is that we want to add dif-
ferent proportions of the primaries to create other colors so that we will multiply the primary col-
ors by some number less than one (so that it is a small proportion) and then add them all to get
some other color cany, so that

B.3)                             cany=

where pr=proportion of red, pg=proportion of green and pb=proportion of blue. If we had
pr=pg=pb=0.5 we will obtain a gray since the diagonal of the color space that runs from black to
white is called gray-scale. We can represent this particular gray as

B.4)                cgray=

Matrices are also called tensors of rank 2, and vectors are tensors of rank 1. Therefore the ordi-
nary single numbers are called tensors of rank 0 or simply scalars. In the example above we saw
the rules for scalar-vector multiplication and vector addition, but not vector multiplication. The
final result for this particular gray is that it has 0.5 proportion of red, green and blue since those
are the vector components.However, if we do make an analogy to the 3D space in which we live
with the exception that the dimensions of color are not homogenous like our space dimensions, it
is more likely to be understood better. For a more detailed look at color, see Hubey [1997]. 

Red

Green

Blue
Figure B:2: Color (Vector) Space: All the colors can be created from the so-called primary colors by
additive mixing. We can think of colors, therefore, as vectors (n-tuples, or arrays) in color space.
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Accuracy and Precision

There is usually no thought given to the possibility of measuring something accurately but not
precisely, or precisely but not accurately. 

Significant Digits
Suppose we want to compute the area of a rectangle with width w and length L, but

the measurements are not and can never be to infinite precision but have errors in them as shown.
Therefore our calculation is really  instead of A=Lw where ∆L and ∆w
are the errors with which we measure L and W.

Therefore . If the error is about one tenth of the actual
size that is measured, then the last product is about one-hundredth and can be dropped introducing
no more than an error of one-hundredth in the final answer for the area. Dropping the other terms
will introduce an error of about ten percent. As an example, suppose we measured L=5.2 and
w=3.1232123432. The product is 16.2407041846 but all of these digits are not significant in the
sense that they are a part of the error since L has not been measured to any more accuracy than 2
digits. For example the error in L can be on the order of 0.1, therefore L could in reality be
between 5.0 and 5.2. If we use these then we see that 15.616061716 < A <16.553025419. There-
fore since the lowest precision number is L, and since it only has 2 significant digits (i.e. the 5.2
since the last digit could be error) then the answer A is only significant to two digits; therefore
A=16.0 (correct basically to two significant digits) and which in a sense is an average since it is
something like the median value in the interval [15.6,16.5]. This number is approximately equal
to the average of the upper and lower limits of A whose first few digits are is 16.08. 

In simple terms, when we make computations such as finding the area of a piece of land we
should make sure that our calculated answers do not give the appearance of being better than they
are. The resolving power of our tools is and must always be greater than the reach of our concepts.
It is easy to know the resolution of our physical instruments and thus perform error analysis.
However, in the non-physical sciences we are forced to create different kinds of instruments with
which to measure things. There are different types of problems associated with social sciences.

Example

A L ∆L±( ) W ∆w±( )=

∆w

∆L

w

L

A Lw L ∆w( ) w ∆L( ) ∆w ∆L( )+ + +=

Lw

w∆L

L∆w

Figure B:3: Errors in Measurement: By choosing A=Lw we mean that we drop the other small terms
which are small error terms that we cannot get rid of.

A Lw L ∆w( ) w ∆L( ) ∆w ∆L( )+ + +=
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Paleontology
In paleontology one is often required and forced to make deep claims on the basis of

partial bones of long-dead ex-living things. In order to find some regularity one is forced to take
into account basically shapes and size of bones from which conclusions are obtained about the
species. Obviously, precision and accuracy are highly correlated in these eye-balling measure-
ments. Judging from the tremendous variation in size and shape of a single living species such as
dogs, one should be very careful announcing that a given set of bones belongs to a different spe-
cies of hominids. There are two species of monkeys for which the differences in skeletons cannot
be ascertained. There are other species (for example, dogs) whose sizes vary greatly. Therefore
much of the lumper vs. splitter arguments are probably not decidable from the fossils since the
precision of the instruments and theory is insufficient to make such determinations.

Reliability and Validity

So habituated are we to measuring things in this modern age that we scarcely give thought to the
possibility that what is being represented as a number may be meaningless. That was the case in
almost all the examples given above which were mostly from the physical sciences with analogi-
cal extensions to other fields. In measurement theory, we use the terms validity and reliability.
Validity of the measurement is that the metric actually measures what we intend to measure. In
physical measurements there is usually no such problem. Validity also comes in different flavors
such as construct-validity, criterion-related validity, and content-validity. Reliability refers to the
consistency of measurements taken using the same method on the same subject.

In the case of concocting an instrument which can measure the genetic affiliation of languages,
the bare minimum we expect should be that it is able at least to recognize that two languages are
the same language or that the two languages are so close that they are dialects. What kind of a
temperature scale would not be able to discriminate that the temperature T in one day was the
same as the temperature T on another day? What kind of a ruler could not discriminate that the
standard length of a piece of paper is exactly the same as another sheet? If there are attempts to
create metrics (algorithms) using probability theory, these algorithms should at least be tested for
validity and reliability for known cases. The clearest case of a known answer is when a language
is tested against itself. Any alleged method, algorithm, instrument, or metric that cannot clearly
and unequivocally show that the two languages are identical (when they are identical) cannot be
said to have passed the validity test.

Example

Reliable
Not Valid Valid

Not Reliable Reliable
Valid

     (precise)

(not accurate)   (accurate on the average)
(not precise)

(accurate)
(precise)

Figure B:5: Reliability and Validity Analogy: One normally expects accuracy to increase with preci-
sion. However in the social sciences they are independent.
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Scales or Levels of Measurement

Before we try to measure or normalize quantities we should know what kinds of measurements
we have. They determine if we can multiply those numbers, add them, rank them etc. Accordingly
measurements are classified as: (i) Ratio scale, (ii) Interval scale, (iii) Ordinal scale, or (iv) Nom-
inal scale.

I. Ratio Scale: The highest level of measurement scale is that of ratio/absolute scale. A ratio scale
requires an absolute or nonarbitrary zero, and on such a scale we can multiply (and divide) num-
bers knowing that the result is meaningful. The standard length measurement using a ruler is an
absolute or ratio scale. 

Distance

Probably the most common measurement that people are familiar with is that of distance. It is
such a general and common-sensical idea that mathematicians have abstracted from it whatever
properties it has that makes it so useful and have extended it to mathematical spaces so that this
idea, is in fact, used and useful in the previous ideas of measurements. The requirement that the
concept of distance satisfies is:

B.5)                                         

The concept of "distance" or "distance metric" or "metric spaces" is motivated by the simple con-
cept illustrated below.
 

If we substitute from the figure above we can see that the distance from LA to NYC can never be
greater than the distance from LA to some intermediate city plus the distance from that intermedi-
ate city to NYC. Any space in which distance is defined is a metric space.

Hamming Distance
Hamming distance is the number of bits by which two bitstrings differ. For example

the distance between the bitstring 1111 and 0000 is 4 since the corresponding bits of the two bit-
strings differ in 4 places. The distance between 1010 and 1111 is two, and the distance between
1010 and 0000 is also two.

Phonological Distance: Distinctive Features
In phonology, the basic primitive objects are phonemes. They are descriptions of the

basic building blocks of speech and are usually described in binary as the presence or absences of

Example

d x z,( ) d x y,( ) d y z,( )+≤

LA NYC

Intermediate
City

Figure B:6: Concept of Distance Metric: Any detour from NYC to LA cannot be a shorter than the direct
distance between the two since distance is measured as the shortest distance between two points.

Example

Example
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specific characteristics such as voicing, rounding, frication, plosivity etc. Since we can represent
these as bitstrings the Hamming distance can be used to measure the distance between phonemes
[Hubey, 1994]. This metric is sometimes called ‘city block’ metric because of the way distances
are measured. For binary-valued variables this can be shown clearly on a Karnaugh map (see
Hubey[1994]) as shown below.

What’s a Bird?
The concept of distinctive features can also be used in conjunction with fuzzy logic

in artificial intelligence to describe (or define) objects, such as a bird, fruit or a chair. For exam-
ple, a set of simple properties such as "has feathers", "is bipedal" and "flies" is generally sufficient
to fuzzily define  ‘bird’ for intelligent entities (such as humans).

II. Interval Scale: However, not everything that can be measured or represented with integers (or
real numbers) constitutes a ratio/absolute scale. 

For example, the Fahrenheit temperature scale is only an interval scale. The differ-
ences on an interval scale (such as the Fahrenheit scale) are valid and meaningful and

correct, but multiplication/division is not. For example, 100F is not twice as hot as 50F.

00

01

11

10

00
0

00
1

01
1

01
0

11
0

11
1

10
1 10

0

x

x

y

y
AB

CDE Five binary variables are plotted on the Karnaugh map. 
The values of the A and B variables are writen vertically 
and in what is called a “reflected code”. The bitstrings 
00,01,11, and 10 are placed so that the adjacent bit-
strings differ only by one bit. The three variables C,D, and 
E are represented similarly so that again the adjacent bit-
strings differ by a single bit. The two y’s represent the bit-
strings 00101 and 11110, thus the distance is 4. A typical 
(city block) distance between the y’s is shown in dotted 
lines. However the distance between the two x’s is 2 
which can be verified from the bitstrings 00001 and 
10011. To see this pictorially, the map must be wrapped 
on a torus (see Hubey[1994]).

Figure  B:7: Karnaugh Map for Phono-
logical Distance [Hubey[1994]].

Example

Example

32

212

0

100

0

273

373

Fahrenheit Celsius Kelvin
Figure B:8: Various Temperature Scales: For calculating things like engine efficiency only the abso-
lute (ratio) scale i.e. Kelvin temperature scale, can be used.
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It took Lord Kelvin and greater development of thermodynamics theory to show that the Fahren-
heit scale gave wrong answers when used in some problems in thermodynamics Kelvin was able
to show that the lowest temperature achievable was about -460F (-273C)  and that this tempera-
ture should have constituted absolute zero on the temperature scale. Since then despite all
attempts no temperature lower than absolute zero has been achieved in laboratories.

III. Ordinal Scale: The next level on the measurement scale is the ordinal scale, a scale in which
things can simply be ranked according to some number but the differences are not valid. In the
ordinal scale we can make judgements such as A>B. Therefore if A>B and B>C, then we can con-
clude that A>C. In the ordinal scale there is no information about the magnitude of the differences
between elements. We cannot use operations such as +, -, * or / on the ordinal scale.

Likert Scale:
It is possible to obtain an ordinal scale from questionnaires. One of the most com-

mon, if not the most common is the multiple-choice test which has the choices: extremely likely/
agreeable, likely/agreeable, neutral, unlikely/disagreeable, and extremely/very unlikely/disagree-
able.

IV. Nominal Scale: The lowest level of measurement and the simplest in science is that of classi-
fication. In classifying we attempt to sort elements into categories with respect to a particular
attribute. This is the nominal scale. On this scale we can only say if some element possesses a par-
ticular attribute but cannot even rank them according to some scale on a hierarchy based on the
intensity of possession of that attribute. We can only think of creating sets based on the possession
of some property and apply the operations for sets. In this sense the set operations are the most
primitive of operations of mathematics. It ranks so low on the scale or hierarchy that we all
instinctively do it. Whatever kind of logic that flows from this must obviously be related to set
theory in some way. Obviously classification is about nothing more than set theory, and although
may be useful in at least providing some logical consistency, and a boon to common sense, it is far
from creating a science like any of the quantitative sciences. The road ahead for linguistics is
clear.

Example
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Appendix C: Relations

Binary relation α from a set X to a set Y (or between two sets X and Y) is a subset
Rα of the cartesian product  ( ). The set D(Rα) of all objects x

such that for some y,  is called the domain of Rα. Similarly, the set R(Rα) of all

objects y such that for some x,  is called the range of Rα.

Many kinds of relations exist but there are some that are quite general and interesting in their own
right, for example, reflexive (and irreflexive), symmetric (and anti-symmetric) and transitive. 

R is reflexive . 

R is irreflexive . A relation R on X is irreflexive if for every

, . In other words, there is no  such that xRx.

R is symmetric . A relation R is called asymmetric if

 implies .

R is anti-symmetric  The contrapositive of this

which is equivalent (obviously) is  or using different notation

 Asymmetry: if xRy then not(yRx). Therefore asymmetric means not symmetric.

R is transitive

Reflexivity and irreflexivity depend only on the diagonal. If some elements of the diagonal are 1
while others are 0 (in the relation in matrix form) then the relation is neither reflexive nor irreflex-
ive. In the digraph (directed graph) of a symmetric relation all arcs/edges are bidirectional. In an
anti-symmetric relation, no arc/edge has a mate that goes in the opposite direction. Reflexivity,
and symmetry can be spotted quite easily either on the graph of the relation or the zero-one matrix
of the relation. 

The regularity of sound change, the “working horse” assumption of comparative linguistics, is a
transitive relation. For example, if the sound changes from the protolanguage P to one of its

daughter languages  (the immediate daughter i.e. level 1 descendant, in the kth branch) is reg-

ular, and if the sound changes from  to its daughter  is regular, then the sound change

from P to  is also regular.The same holds for every descendant for every branch. Therefore
the relation from one daughter language to another daughter language is also regular.

Definition
X Y× Rα X Y×⊆

x y,〈 〉 Rα∈
x y,〈 〉 Rα∈

Definition x xRx( )∀≡

Definition x∀ x x,( ) R∉( )
x X∈ x x,( ) R∉ x X∈

Definition x y xRy yRx⇒( )∀∀≡
a b,( ) R∈ b a,( ) R∉

Definition x y xRy yRx∧ x y=( )⇒( )∀∀≡
a b≠ aRb bRa∨⇒

a b≠ a b,( ) R∉ b a,( ) R∉∨⇒

Definition

Definition x y z xRy yRz∧ xRz⇒( )∀∀∀≡

D
k
1

D
k
1 D

k
2

D
k
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Representation of Relations

1. Set-theoretic Representation of Relations

Relations can be written/expressed simply as a set of ordered pairs:

C.1a) R1={(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)}
C.1b) R2={(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)}
C.1c) R3={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)}
C.1d) R4={(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)}

2. Matrix Representation of Relations

We can represent relations via adjacency matrices. In this representation a 1 entry in the aij posi-
tion indicates that there is an edge from ith vertex to the jth vertex. 

3. Graph-theoretic Representation of Relations

                                                                                 

C.2)

1 1 0 1

1 1 0 0

0 0 1 0

1 0 0 1

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

not reflexive reflexive not reflexive reflexive
not irreflexive not irreflexive irreflexive not irreflexive
not symmetric symmetric not symmetric not symmetric
not antisymmetric anti-symmetric anti-symmetric anti-symmetric

Figure C:1: Relations in #1 and whether they are reflexive, irreflexive, symmetric or anti-symmetric.
Reflexiivity and symmetry have to do with the main diagonal of the relation matrix. Transitivity is harder to
determine.

1 1 0 0
1 1 0 0

0 0 0 1

1 0 0 1

23

4

1

2
3

4

R1 R2
R3

23

4

23

4

1
1 1

R4
transitivetransitive

Figure C:2: Graphs of Figure C:1 and whether they are transitive: The edge triplets labeled by tick
marks dellineate relations involved in transitivity.
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Boolean matrices, and Relations

As can be seen above, these matrices are of the special type called zero-one matrices. These
matrices are used to represent discrete structures as shown above. In the matrix multiplication of
the earlier section, the laws of arithmetic were used. It is possible to use Boolean operations
instead of arithmetic operations on these zero-one matrices. In this case the addition operation
gets replaced by  and multiplication by . The join of two zero-one matrices A, and B is the

matrix G whose elements are . The meet of two zero-one matrices A, and B is a

matrix E whose elements are . Note that this is not normal (arithmetic)matrix multi-

plication. The matrices A and B must be the same size. The analogue of matrix multiplication for
zero-one matrices is the Boolean product of two zero-one matrices. It is simply the product of two
zero-one matrices using  and  instead of addition and multiplication, respectively. The Bool-

ean product of the two matrices  above is:

If R and S are relations so then are , , , , . For example if W is
the set of roots/stems of a given language, and P is the set of phonemes of the language, then we
can define relations as follows. Let the relation F be the set of ordered pairs (p,w) where p occurs
in word w in the word-final position. Let I be the set of ordered pairs (p,w) where the phoneme p
occurs in the word-initial position. Then  is the set of all ordered pairs (p,w) in which the

phoneme p occurs both in the initial and final position in the word w. The  is the set of all

ordered pairs (p,w) in which p occurs either in the initial or final position in word w.  is the
relation in which the phoneme occurs either in the initial or final position but not both;  is

                                                                      

symmetric        anti-symm                neither               symmetric              neither              anti-symm
neither              neither                     neither                reflexive               irreflexive              neither
Figure C:3: Are the relations symmetric or reflexive?
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Figure C:4: Matrix Multiplication for Relations using Boolean Operations: Addition and multiplica-
tion are Boolean operations; the algorithm to calculate every element is the same as matrix multiplication.

C.3)
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F I⊕
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the relation in which p occurs in the final position but not in the initial position;  is the rela-
tion in which the word appears in the initial position but not the final position.

Composition of Relations

Let R: and S:  be two relations. The composition of R and S, denoted by  con-
tains the pairs (x,z) if and only if there is an intermediate object y such that (x,y) is in R and (y,z)
is in S. Therefore . Note that xRy can also be written as Rxy or

R(x,y) or . The composition of relations is given by the Boolean product of the matri-
ces of the relations. An example is shown below.

From the graph above we can see that the matrices for the relations are

I F–

X Y→ Y X→ R S•

x R S•( )z y xR y yRz∧( )( )∃=

x y,( ) R∈

x1

x2

x3

x4

y1

y4

y3

z1

y2

z2

z4

z3

x1

x2

x3

x4

z1

z2

z4

z3

z5 z5

X Y Z X Z

R S       R S•

Figure C:5: The Graph of Composition of Relations. One can check the Boolean product of the X and
Y matrices to see that the composition of relations is calculated by that product. Suppose set X is the set
of basic words in the protolanguage, and let set Y be its daughter languages. According o the Neogram-
marian Assumption, Y cannot be a single daughter language since some words of the protolanguage
change to more than one ‘offspring’ words. In other words some of the members of set Y are cognates,
and are reflexes of the corresponding protoword. For example, y1 and y2 are cognates and are reflexes
of x1. Then let set Z is the set of daughter languages of the daughter languages, for which the set Y is a
protolanguage since every language is a potential protolanguage for its descendants. In the above ex-
ample, we see that z3 is a word that may be in two languages and shows a convergence of two separate
words. In reall languages such things are possible. Now the composition of these two relations is also a
relation and maps the original protolanguage to its second level daughter languages. It can be seen in
this for example that word z3 is a convergence of two words x1 and x4 in the original protolanguage. We
can see from this simple example that the methods of historical/comparative linguistics can easily be dis-
cussed in terms of sets and relations. 
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C.4)                                            and . 

The Boolean product is given by

C.5)                                    

Composition is an associative operation:     

Proof: 
Using suppressed summation tensor notation (first used by A. Einstein)

C.6)                                   

If R is a relation on the set A, then the powers Rn, n=1,2,3.. are defined inductively by

 and . An example is shown below.

The relation R on a set X is transitive if and only if  for n=1,2,3...

R

1 1 0 0
0 0 0 0

0 0 0 1

0 0 1 0

= S

0 1 0 0 0
1 0 1 0 0

0 0 1 0 0

0 0 0 0 1

=

R S•

1 1 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

=

1 1 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0 0

1 0 1 0 0

0 0 1 0 0

0 0 0 0 1

=

Theorem R S•( ) T• R S T•( )•=

R S•( ) T• rijsjk( )tkm qiktkm vim= = =

R S T•( )• rij sjktkm( ) rijujm vim= = =

rij sjk

 
 
 
 
 

tkm qik tkm vim= =

rij sjk tkm

 
 
 
 
 

rij ujm vim= =

Figure C:6: Composition Multiplication

  Fact

R
1

R= R
n 1+

R
n

R•=

Transitive

source

sink 0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0
1 2

3

4

0 0 1 0

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

R R2 R3

Figure C:7: Powers of the Matrix of Relation R

Fact R
n

R⊆
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A transitive closure for relation R is a relation R* that contains R, is transitive and

is as small as possible. In other words R* contains R, is transitive and is contained
in every transitive relation that contains R.

 The connectivity relation Rc of a relation R is the pairs (x,y) such that there is a

path between x and y in R. Since Rn consists of pairs (x,y) such that there is a path

of length n from x to y, then it follows that Rc is the union of all the sets Rn or

Rc= .

 The transitive closure R* of a relation R is the connectivity relation Rc.

Equivalence Relations

 A relation on a set is called an equivalence relation if it is reflexive, symmetric and
transitive.

Congruence Modulo m: Show that the relation

                             

is an equivalence relation on the set of integers.

We know that  if and only if m divides a-b. Note that a−a=0 is divisible by m since

. Hence, , therefore it is reflexive. Then if a-b is divisible by m then so

is b−a since b−a=−(a-b) therefore it is symmetric. Suppose  and .
Therefore, from the definition of the modulo operation, a−b=km and b−c=nm. Adding these
together we obtain a−c=(a−c)+(b−c)=km+nm=(k+n)m. Therefore .

 If R is an equivalence relation on a set X, then the set of all elements that are
related to an element x of X is called an equivalence class of x. The equivalence

class of x with respect to (wrt) R is denoted by [x]R. In other words . If

 then b is called a representative of this equivalence class.

Let R be an equivalence relation on a set S. Then the equivalence classes of R form a
partition of S. Conversely, given a partition  of the set S, there is an equiv-

alence relation R that has the sets  as its equivalence class. If the reflexes of any protolan-

guage could be guaranteed to exist in one and only one present-day daughter language then the
relation of regular sound change would create equivalence classes so that every reflex of every
word of the protolanguage would exist in only one class (i.e. one daughter language).

Definition

Definition

R R
2

R
3 …∪ ∪ ∪ R

n∪=

 Fact

Definition

Example

R a b,( ) a b mod m( )≡{ }=

a b mod m( )≡
0 0 m⋅= a a mod m( )≡

a b mod m( )≡ b c mod m( )≡

a c mod m( )≡

Definition

x[ ] R y x y,( ) R∈{ }=

b x[ ] R∈

  Fact
Ai i I∈{ }

Ai i I∈,
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Inverses

If R is a relation from a set A to a set B, then the inverse relation from B to A,

denoted by R−1 is the set of ordered pairs . The complemen-

tary relation is the set of ordered pairs . The graph of the inverse relation
has the same edges except that the arrows are in the opposite directions. If the relation is symmet-
ric, the relation is self inverse. Think about flipping the matrix along the diagonal.The inverse is,

in effect, undo. One can see this quite plainly in various functions for example, ln(ex)=elnx=x, and
sin(arcsin(x))=arcsin(sin(x))=x. Similarly if we have , then the inverse function is

C.7)                                 . 

Therefore

C.8)                        

and

C.9)                  .

Definition
b a,( ) a b,( ) R∈{ }

R a b,( ) a b,( ) R∉{ }

f x( ) αx β+=

f
1–

x( ) x β–
α

-----------=

f f
1–

x( )( ) f
x β–

α
----------- 

  α x β–
α

----------- 
  β+ x= = =

f
1–

f x( )( ) f
1– αx β+( ) αx β+( ) β–

α
------------------------------ x= = =
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Appendix D: Functions

A binary relation f from set X to set Y is called a function if for every 
there is a unique  such that .In other words, the function is a rule

which assigns to each element of X some element of Y. It is customary to write y=f(x) instead of
writing .In this case, x is called the argument of the function f and the corresponding y
is called the image of x under f. Sometimes this notation is extended to the whole set so that we
denote the range of as Rf=f(X).

Note that this definition requires that a function must satisfy two conditions to qualify. The first
condition is that every  (the domain) must be related to some element  (the
codomain); that is Df=X which means that the domain of f is not a subset of X but the whole set.

Similarly, the range of f is denoted by Rf and . In graphical notation every vertex 

must have an arc emanating from it. The second condition is the uniqueness condition; that is one
and only one element of Y is mapped to each x. In this definition, one cannot have two arcs ema-
nating from any vertex since it would imply that the element mapped to x is not unique. Using 
for conjunction (logical AND) we write this as

D.1)                                      

or as 
D.2)                                   .

This means that one element of X cannot be mapped to many elements of Y (one-to-many is not a
function!). But, the condition does not say that many elements in X cannot be mapped to one ele-
ment of Y (many-to-one mapping is a function!). However, the first condition is relaxed by some
authors [Tremblay & Manohar, 1975:193]. When this requirement is relaxed i.e. , then it

is a partial function [Preparata & Yeh, 1973:29]. 

In linguistics a natural language’s speech sounds are categorized so that a minimal
number of sound shapes are used to write the words or speech sounds of that lan-

guage. Let this minimal set of sounds be the set P. One way to describe these speech sounds is by
a simplified description of the positions of the speech articulators which are called distinctive fea-
tures of the sound. For example a simple division of simple vowels (not compounds such as diph-
thongs or tripthongs) is by the two way position of the tongue high-low and front-back along with
the motion of the lips round-unrounded. Thus u is {round, back, low} and the sound i is
{unround,front,high}. If we now depict these phonemes as 100 and 001 respectively then the
Hamming distance between these two i.e. H(u,i)=2. Similarly H(a,u)=H(010,100)=2.

Define f(word,place,transition) as a function from  to A where A is the set
of phonological words in a language, N is the set of natural integers and P is the set

of phonemes. Therefore the function f(pit,2,e)=pet since it says to change the 2nd phoneme of the
word pit into e by which the word pit changes to pet.

Definition x X∈
y Y∈ x y,〈 〉 f∈

x y,〈 〉 f∈

x X∈ y Y∈

Rf Y⊆ x X∈

∧

x y, m〈 〉 f∈ x y, n〈 〉 f∈∧( ) ym yn=( )⇒

ym f x( )=( ) yn f x( )=( ) ym yn=( )⇒∧

Df X⊆

Example

Example A N× P×
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A function f:  is called onto (surjective) if Rf=Y; otherwise it is called into.

Another way of saying this is that the function is onto if for any  there is at

least one such that y=f(x). Graphically, this means that each vertex of Y is reached by at
least one arc from X, which means again that many-to-one is a function.

A function is one-to-one (injective) if distinct elements of X are mapped to distinct
elements of Y. In other words  or the contrapositive

. Note that we had already allowed many-to-one so this restriction

means that it is not allowed. Therefore two elements of X (i.e such as xm and xn) cannot map to
the same element y (i.e. f(x) unless xm=xn. So if xm does not equal xn, then they can’t map to the
same y in Y.

A one-to-one correspondence (or bijection) is a function that is both one-to-one
and onto.

Definition X Y→
y Y∈

x X∈

Definition
xm xn≠( ) f xm( ) f xn( )≠( )⇒

f xm( ) f xn( )=( ) xm xn=( )⇒

Definition

not onto
not 1-1

onto
not 1-1

1-1
not onto

onto
1-1

not a 
function

not a
function

(a) (b) (c) (d) (e) (f)

Figure D:1: Functions and nonfunctions
In real life the relation from the set of words of a  protolanguage and the set of words of any of its descen-
dants is not a function at all but is more like that of (c). Some words of the protolanguage do not get trans-
mitted forward in time, and some words in the daughter language do not descend from any of the words
of the protolanguage. The implicit algorithms used in historical linguistics (the comparative method) as-
sumes that we can select the subset of the words of any language so that we can separate them into
three classes: (i) those descended directly from the ancestors of the daughter language all the way from
the protolanguage, (ii) those that are copied from ancestors of other daughter languages and (iii) those
that are copied from or left over from other families. The relation between the protolanguage and those
of set (i) is definitely not onto and is almost 1-1. It is not onto because every word in the daugher language
does not come from the protolanguage. It is almost 1-1 because every word of the protolanguage does
not show up in every daughter language. However the relation from a subset of the protolanguage to its
daughters is 1-1. The trick is to reconstruct this subset. At the same time, a function from a daughter lan-
guage’s set of words descended from its protolanguage  to its protolanguage is 1-1 (but not onto) since
every word in this set must descend from the protolanguage but since some of the words of the protolan-
guage have been lost we cannot recover them from a single language. That is also a problem of recon-
struction or geneticity or family determination.
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A function f:  is said to be invertible if its inverse f−1 is a function from Y to
X. A function is invertible if and only if it is both one-to-one and onto. If a function

is not invertible, then it is not a one-to-one correspondence since the inverse of such a function
does not exist.

Cladistics
 Cladograms are essentially hypotheses about the pattern of nested evolutionary nov-

elties postulated to occur among a group of organisms, and are therefore branching diagrams of
organisms. As a general rule, organisms that share many similarities are likely to be related. The
inference of phylogenetic relationships requires basic distinction between three types of similar-
ity; convergent similarity (developed independently), and homologous similarity (based on inher-
itance from a common ancestor) which gets further divided into two classes; primitive features
(those that were present in the initial common ancestor of the group) and derived features (those
that were developed in a later ancestor within the genetic tree). Only shared derived similarities
indicate the pattern of relationships in a tree. If we consider n homologous distinctive features,
and out of this m of them are derived features between two species, then (n−m)/n is a normalized
measure of similarity between the two species. In normalized distance measure, distance and sim-
ilarity are related by d(x,y)=1−s(x,y) or s(x,y)=1−d(x,y). In this sense distance is a measure of dis-
similarity so that if s(x,y)=(n−m)/n then d(x,y)=1−(n−m)/n=m/n. Therefore we can find the
distance between every member of the group being considered, and then find the minimal span-
ning tree so that each organism is adjacent to the closest (most similar) organism.

Phonemes as Vectors

It is standard in phonology to define (or describe) the basic building blocks of speech, phonemes,
in terms of  articulatory, acoustic and perceptual terms, using the concept of “distinctive features”.
These features normally revolve around the descriptions of the primary articulators; the tongue
position, the lips, the velum and the glottis. The lip positions are usually described as round or
unround for vowels and bilabial for consonants such as p, b, and m, and labio-dental for the con-
stants such as f and v. The tongue position  normally low resolution descriptions has two degrees
of freedom; height and placement from the front of the articulatory channel to the back.  Many
consonants are described simply by the name of the part of the mouth where the the tongue makes
a constriction such as velar, laryngeal, dental. In addition the velum is used for nasalization and
the glottis for voicing.  In addition, speech sounds are divided up into sets depending on some real
or alleged characteristics of these sounds which naturally makes them belong together.

In very broad ways we can divide up these speech sounds into 4 classes; Vowels (V), Consonants
(C), Semivowels (S), and Quasiconsonants (Q). The first three are commonly used; the fourth
comes from Hubey [1994]. The usefulness of a classification in powers of two is obvious. In addi-
tion there are fundamental reasons why speech sounds should be divided into these four groups.
In order to make a four way division we need two binary features. In this case one of them is the
fact that vowels and the quasiconsonants (liquids and fricatives) are steady-state sounds. They can
be produced while the articulators are held steady. The consonants and semivowels cannot be pro-
duced except via a motion of the articulators. The other binary distinctive feature is what might be
called resonance or frication-to-resonance ratio which is analogous to the signal-to-noise ratio.
Vowels and semivowels are naturally identified as speech sounds with highly peaked (resonant)

Definition X Y→

Example

Example
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spectra, while plosives such as p,t,k have almost constant power spectra (in which it is almost
impossible to see any resonance) and voiced plosives in which one sees a spectra resembling a
signal with a very high level of noise. Just as the semivowels are those sounds which have some
characteristics of consonants (because of the motion of the articulators) the quasiconsonants have
some characteristics of vowels in that they have some resonance (and can be produced while the
articulators are in steady-state) so that their power spectra lies somewhere between pure frication
(such as for sibilants s, sh or f) and a vowel with a lot of noise. The quasiconsonants have peaked
power spectra with choppiness that is due to the noise.We can denote a phoneme as a vector in
many ways. The simplest (and not necessarily the most accurate or the best for any given purpose)
is to denote it by using a set of binary distinctive features. Any of the set of binary features (which
are called oppositions in common linguistics terminology) such as from Ladefoged may be used.
In this case, the phoneme is simply an n-tuple or a vector

Phonemes as Fuzzy Vectors
We can have low resolution phoneme description using only five dimensional fuzzy

vectors using the dimensions front-back, round-unround, nasal-nonnasal, voiced-unvoiced and
motion-steady_state. The distance for this should be like this: if the first digit is the same then the
distance at the first level is zero, but if the first digit is not the same then the distance is 1. So we
need a hierarchical distance. If the classification is of the form D1D2...Dn-1Dn then we compare
the two strings and weight each difference at each level differently. The only thing we look for at
the same level is if they are the same or not. If they are the same the distance at that level is zero.
If they are different then the distance at that level is 1. If the tree could be produced so that a hier-
archy is exhibited also from the left to right at each level then we could use the absolute value of
the differences (or square of the difference) as a measure of distance at that level. Of course, these
partial distances will also have to be weighted appropriately. What this means is that we should
create a distance scheme of the sort:

D.3)                                             

This scheme would work for color distance when R, G, and B are represented as say, 3 bits each
for then since these three bits are intensities, the most significant bits (MSB) should be counted
more heavily in the distance so we can just divide by the bit position counting from the MSB so
that we have wj=1/j. In this case, the maximum score would be

D.4)                                           . 

This is the Harmonic series. The sum can be found from [Graham et al, 1989: 41] 

D.5)                                            

It would be much easier to use the weighting wi=(1/k)i where k=1 yields the unweighted case and
for k >1, we have the geometric series so that we can easily compute the normalizing factor, there-
fore the distance function is;

Example

d x y,( ) wi xi yi⊕( )⋅
i 1=

n

∑=

1
1
---

1
2
---

1
3
---

1
4
--- … 1

n
---+ + + + +

Hk

0 k n<≤
∑ nHn n–=
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D.6)               

Simple Phoneme Distances
We can compute distances between phonemes using different ways. 

The 3D vowel cube can be seen to be many things in one. We can think of it as a vector space for
vowels except that it has to be twisted and sheared into shape to fit the actual human speech sounds
based on formants [Hubey,1994]. One needs to use the 3D versions of the scale, shear, translate
and rotate matrices to fit the cube into data obtained from actual speech of humans.

d x y,( ) wi xi yi⊕( )
i 1=

n

∑ 1 k–

1 k
n 1+

–
--------------------- wi xi yi⊕( )

i 1=

n

∑= =

Example

000

001
011

010

100

101

110

111
a

u
o

e

ï

öü
d i o,( ) i1 o1⊕ i2 o2⊕ i3 o3⊕+ + 3= =

Hamming Distance example

Euclidean Distance example

d i o,( ) 0 1–( )2 0 1–( )2 1 0–( )2+ + 3= =

Figure D:2: Distance Examples on the Ordinal Cube of Wowels [Hubey,1994]
Clearly, if we substitute 1 for n in the general distance formula, we obtain the standard Euclidean distance
however for phonology, perception or other purposes other values may be used. It might be useful to use
other (combination) distance metrics. Bold letters are used for vectors (phonemes) Hubey[1994].

Generalized  Distance:

d i o,( ) 0 1–( )2n 0 1–( )2n 1 0–( )2n+ +2n=
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Appendix E: Partially Ordered Sets: Posets

A relation R on a set S is called a partial ordering, or partial order if it is reflex-
ive, antisymmetric, and transitive. A set S together with a partial ordering R is

called a partially ordered set, or poset, and is denoted by (S,R). 

 The “greater than or equal to” relation ( ) is a partial ordering of the integers.

Since  for every integer the relation is reflexive. Whenever  and 

then x=y, therefore it is antisymmetric. Whenever  and  then  and hence it is tran-
sitive. 

 The “prerequisite tree” is not a tree but a partial order.In this definition the word
really means prerequisite or corequisite. Since every course is required for itself the

relation is reflexive. Whenever a course x is required for course y and course y is also required for
course x, then it is the same course, therefore it is antisymmetric. Whenever course x is required
for course y and course y is required for course z then course x is required for course z and hence
it is transitive.

 Descent is a partial order with the proviso that every language is its own descendant.
This would mean that descent is analogous to  instead of merely >. We could have

instead invented another word but it is not necessary.  The relation is anti-symmetric because if x
is a descendant of y, y is not a descendant of x. And it is transitive. Similarly, we can use the sound
correspondance or sound change in ways in which it is symmetric or antisymmetric.

 The implication in logic  is a partial ordering. It is reflexive because every prop-

osition implies itself as the Law of Identity. It is antisymmetric because if  and

 then . It is transitive because if  and , then .

Definition

Example ≥
x x≥ x y≥ y x≥

x y≥ y z≥ x z≥

Example

Example
≥

Example ⇒
p q⇒

q p⇒ p q⇔ p q⇒ q r⇒ p r⇒
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