
CONSTRUCTING EVOLUTIONARY TREES IN THE PRESENCE OF

POLYMORPHIC CHARACTERS

MARIA BONET� CYNTHIA PHILLIPSy TANDY J. WARNOWz SHIBU YOOSEPHx

Abstract. Most phylogenetics literature and construction methods based upon characters presume monomor-
phism (one state per character per species), and yet polymorphism (multiple states per character per species) is
well documented in both Biology and Historical Linguistics. In this paper we consider the problem of inferring
evolutionary trees for polymorphic characters. We show e�cient algorithms for the construction of perfect phylo-
genies from polymorphic data. These methods have been used to help construct the evolutionary tree proposed by
Warnow, Ringe, and Taylor for the Indo-European family of languages, which was presented by invitation at the
National Academy of Sciences in November 1995.

1. Introduction. Determining the evolutionary history of a set S of objects (taxa or species)
is a problem with applications in a number of domains such as Biology, Comparative Linguistics,
and Literature. Primary data used to compare di�erent taxa (whether biological species, popula-
tions, or languages) can be described using characters, where a character is a function c : S ! Z,
where Z denotes the integers and thus represents the set of possible states of c. In this paper we
consider tree construction when characters are permitted to have more than one state on a given
object. We call this the polymorphism problem. A character which is permitted to have more
than one state on a given object will be called a polymorphic character, and one which can have
only one state for every object is referred to as a monomorphic character.

Polymorphism is well-documented in both the molecular genetics and comparative linguis-
tics domains. For example, the population geneticist Masatoshi Nei writes: The study of protein
polymorphism has indicated that the extent of genetic variation in natural populations is enor-
mous. However, the total amount of genetic variation cannot be known unless it is studied at the
DNA level. The study of DNA polymorphism is still in its infancy, but the results so far obtained
indicate that the extent of DNA polymorphism is far greater than that of protein polymorphism.1

Polymorphism also arises in the comparison of di�erent languages. The Indo-Europeanist Donald
Ringe writes: In choosing lexical characters we try to work with basic meanings (semantic slots),
choosing from each language the word that most usually expresses each basic meaning. Languages
typically have one word for each basic semantic slot, but instances of two (or even more) words
apparently �lling the same basic slot are not rare.[30]

Thus, polymorphic data is a reality when working with evolutionary tree construction for
both linguistic analysis and biological taxa, and methods appropriate for such construction must
be devised. In the phylogenetics literature and programs (such as Phylip, PAUP, and MacClade),
algorithms and software to evaluate �xed leaf-labelled tree topologies for polymorphic data have

� Department of Computer Science, Universidad Politecnica de Catalu~na. bonet@goliat.upc.es. Research
partly supported by NSF grant number CCR-9403447

y Sandia National Labs, Albuquerque, NM, USA. caphill@cs.sandia.gov. This work was performed under
U.S. Department of Energy contract number DE-AC04-76AL85000

z Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.
tandy@central.cis.upenn.edu. Research partly supported by an NSF National Young Investigator Award under
contract ccr-9457800 and from an NSF grant in Linguistics .

x Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.
yooseph@gradient.cis.upenn.edu. Research partly supported by a Fellowship from the Institute for Research in
Cognitive Science at the University of Pennsylvania and also by a Fellowship from the Program in Mathematics
and Molecular Biology at the University of California at Berkeley, which is supported by the NSF under grant no.
DMS-9406348

1 From [28], page 254.

1

explicitly required that the number of states be kept quite small because the evaluation requires
time exponential in the number of states. This is the �rst algorithmic study of this problem to
go beyond �xed topology problems for bounded number of states.

The major contribution of this paper is a methodology for inferring perfect phylogenies
from monomorphic and polymorphic characters. Recent work in Historical Linguistics [38] has
shown that perfect phylogenies should be obtainable from properly selected and encoded linguistic
characters. Algorithms for constructing perfect phylogenies from monomorphic characters were
used in [38] to analyze the Indo-European family of languages, whose �rst-order subgrouping
had been argued for decades without resolution. The methodology we propose here signi�cantly
extends the range of the data that can be analyzed in Historical Linguistics. We have applied this
methodology to the data set studied by Warnow, Ringe, and Taylor. Detection and resolution of
polymorphism led to a modi�cation of their initially proposed phylogeny, which was based only
on monomorphic characters. Our methodology and its results were presented at the Symposium
on the Frontiers of Science at the National Academy of Sciences in November 1995.

The structure of the rest of the paper is as follows. In Section 2, we discuss the causes of
polymorphism in Linguistics and Biology, and de�ne the problem of inferring trees from poly-
morphic characters in these two domains. We show that a perfect phylogeny is an appropriate
objective when working with linguistic data as well as some biological data. In Section 3 we
present two algorithms, one graph theoretic and one combinatorial, for the problem of inferring
perfect phylogenies from polymorphic data. In Section 4.3, we present a methodology for inferring
perfect phylogenies from data which combine monomorphic and polymorphic data. In Section 5
we present our analysis of the Indo-European data studied by Warnow, Ringe, and Taylor [38].
In Section 6, we consider the problem of inferring evolutionary trees from polymorphic data when
a perfect phylogeny is an unlikely outcome. We conclude in Section 7.

2. Foundations. The causes of polymorphism in Biology and Linguistics di�er, and within
Biology, polymorphism has more than one cause as well. In Linguistics, convergence of mean-
ings over time, borrowing of synonyms from other languages, and the inability of modern-day
linguists to detect subtle di�erences of meaning in words from ancient languages, can all produce
polymorphic characters. Some such cases, like English little and small, arise by the convergence
of meanings over time; others, like American English stone and rock (to describe a small chunk
of the substance that can be thrown), are instances of replacement in progress (rock is replacing
stone in that basic meaning in America). It can be shown that the di�erent manifestations
of polymorphism in Linguistics each can be described by the conation of two or more distinct
linguistic characters. Often we are able to determine the precise number of monomorphic char-
acters that have merged into the polymorphic character. In Linguistics it has been observed that
monomorphic characters are convex, where by this we mean that the nodes sharing any state of
any character form a connected set in the tree.

Definition 1. Given a set S of taxa de�ned by a set C of characters (jCj = k), where each
cj 2 C is a function cj : S ! (2Z � f;g), let T be a tree which is leaf-labelled by the taxa in S
and with each internal node v labelled with a vector from (2Z �f;g)k such that the value of cj(v)
is given by the jth component of this vector. A character (polymorphic or monomorphic) c is
convex on T if for all i 2 Z, the set Xc;i = fv 2 V (T) : i 2 c(v)g is connected. T is a perfect
phylogeny if every character is convex.

For polymorphism caused by convergence of convex monomorphic characters, polymorphism
can be considered a separation problem.

Definition 2. A polymorphic character c with r states is separated into characters �1; : : : ; �l
by a function f : f1; : : : ; rg ! f1; : : : ; lg where ��1

j (i) = c�1(i) if f(i) = j. Undetermined values

2

of �1; : : : ; �l are arbitrary. In particular singletons maintain the spirit of character c. That is,
if f(i) 6= j for any i 2 c(s) (species s does not contain any state mapped to character j), then let
��1
j (�j(s)) = fsg (s has a unique state for �j).

Problem 1: Separation into l convex characters.

Input: Set S of taxa de�ned by set C of characters.
Question: Can we separate each character into at most l monomorphic characters, so that

a perfect phylogeny exists for the derived set of monomorphic characters?

Due to inadequate historical evidence, input data may not reect the actual degree of poly-
morphism. Separation may be necessary to obtain convexity even if all input characters appear
monomorphic. For example, consider four languages with three characters: A = (1; 2; 1);B =
(1; 2; 2); C = (1; 2; 1);D = (1; 2; 2). Suppose the �rst two characters convolve (meanings merge)
and linguists detect only one of these characters for each language. This polymorphic character
appears monomorphic: A = (1; 1); B = (1; 2); C = (2; 1); D = (2; 2). There is no perfect phy-
logeny for this set, but we can separate the �rst character into two such that there is a perfect
phylogeny: A = (1; a; 1);B = (1; b; 2); C = (c; 2; 1), and D = (d; 2; 2). Because of lost informa-
tion, we cannot completely determine the inferred characters �i (hence the use of singletons).

In Biology, polymorphic characters can arise when dealing with allozyme data [26] and mor-
phological data [39]. In coding allozyme data, each locus is assumed to be a character (as opposed
to a character being de�ned as the presence or absence of individual alleles) and the set of char-
acter states can then be de�ned by the combination of alleles present at the locus. When dealing
with sequence data, alternative encodings of the same amino acid sequence can also lead to the
presence of polymorphic characters. In each of these cases, the number of di�erent forms that
the character can take on a given taxon may be bounded, in which case we may reasonably seek a
tree in which every node has no more than some pre-speci�ed bound of states for each character.
This bound may be character dependent.

Definition 3. A tree T which has polymorphic characters is said to have load l if for every
character c 2 C and every v 2 V (T), jc(v)j � l.

Problem 2: l-load perfect phylogeny.

Input: Set S of taxa de�ned by set C of (possibly) polymorphic characters.
Question: Does an l-load perfect phylogeny exist?

For many morphological characters in Biology, convexity is a reasonable assumption (e.g.
consider vertebrate-invertebrate). Although the causes of polymorphism in Biology and Linguis-
tics di�er, when convexity can be assumed, the di�erent problem formulations are equivalent.

Theorem 2.1. Given a set of taxa de�ned by a set C of polymorphic characters, T is an
l-load perfect phylogeny for C if and only if we can separate each polymorphic character into at
most l monomorphic characters such that T is also a perfect phylogeny for the derived set C0.

Proof. One direction is easy. For the converse, let T be a perfect phylogeny with load l, let
� 2 C be given, and assume � has r states present on S. Let Ti be the subgraph of T induced
by the vertices labelled i by �. Since T is a perfect phylogeny, each Ti is a subtree. De�ne G� to
be the graph whose vertices are in one-to-one correspondence with the subtrees Ti; i = 1; 2; : : : ; r,
and where (Ti; Tj) 2 E if and only if Ti \ Tj 6= ;. Note that since T has load l, G� has max
clique size at most l. G� is triangulated since it is the intersection graph of subtrees of a tree
[7], and hence G� is perfect [17]. Since G� is perfect, the chromatic number of G� equals the
max clique size, and hence is bounded by l. Hence we can partition the nodes of G� into at most
l independent sets, V1; V2; : : : ; Vl. Each Vi thus de�nes a monomorphic character (�lled in with
singletons), and hence T is a perfect phylogeny for each of these monomorphic characters.

3

Polymorphism in characters that are based upon columns of molecular sequences behaves
di�erently than polymorphism in morphological characters; for these characters, variations on
the parsimony criterion are more appropriate optimization criteria. We discuss the computational
complexity of these problems in Section 6.

3. Inferring Perfect Phylogenies from Polymorphic Characters. When the maxi-
mum permissible load for each character is not given, the problem of inferring perfect phylogenies
is best stated as a minimum load problem. This is addressed in Section 3.1. When the maximum
permissible load for each character is given, we have two algorithms which can construct per-
fect phylogenies; both are e�cient when the number of characters is small. These algorithms are
presented in Section 4. When the character set includes a su�cient number of monomorphic char-
acters, we have a third algorithm which combines techniques for monomorphic and polymorphic
characters. This algorithm is presented in 4.3.

3.1. Min Load Problems. When convexity of the monomorphic constituents of the poly-
morphic characters is a reasonable request, we may seek a tree with a pre-speci�ed load bound,
or else we may seek a tree with a minimum possible load bound. We call the latter problem the
Minimum Load Problem.

We note that the Minimum Load Problem is NP-hard, since the question of whether a 1-load
Perfect Phylogeny exists is NP-Complete [4, 36]. The 2-load Perfect Phylogeny Problem is the
next question to consider. The various parameters to the problem are n, the number of species;
k, the number of (polymorphic) characters; and r, the maximum number of states per character.

Theorem 3.1.

(i) The Min Load Problem can be solved in polynomial time for all �xed n.
(ii) The Min Load Problem can be solved in polynomial time when r = 2.
(iii) The Min Load Problem is NP-hard for all �xed k.
(iv) The Min Load Problem is NP-hard for all �xed r � 3.
(v) Determining whether a 2-load perfect phylogeny exists is solvable in polynomial time for

all �xed n.
(vi) Determining whether a 2-load perfect phylogeny exists is solvable in polynomial time

for r = 2.
(vii) Determining whether a 2-load perfect phylogeny exists is solvable in polynomial time

for all �xed k.
(viii) Determining whether a 2-load perfect phylogeny exists is NP-complete for all �xed

r � 3.

Proof.

Parts (i) & (v) : When n is �xed, the number of possible leaf-labelled topologies is bounded,
so we need only consider the Min Load problem on a �xed topology. Determining the minimum
load on a �xed leaf-labelled topology is trivial, since for each internal node v 2 V (T) and each
character � 2 C, we simply set �(v) = fi : 9x; y leaves of T with v on the path from x to y, and
i 2 �(x) \ �(y)g. This determines the minimum load for the topology. The same argument can
be used to show that 2-load perfect phylogeny is solvable in polynomial time when n is �xed.

Parts (ii) & (vi) : If r = 2, then clearly the Min Load problem and thus the 2-load perfect
phylogeny problem can be solved in polynomial time by observing that 1-load perfect phylogeny
on binary characters is solvable in polynomial time [18] and that there is always an r-load perfect
phylogeny on any input set containing characters with at most r states.

Part (iii) : We now show that the Min Load Problem is NP-hard for all �xed k by showing
that the l-load perfect phylogeny problem with �xed number of characters k � 1, where each

4

character has input load 2 (i.e. 2 states for every species), is NP-complete. The reduction is
from the following problem involving partial t-tree recognition. See section 4.2.3 for de�nitions
of t-trees and partition intersection graphs.

Input : A graph G = (V;E) and an integer t � (n � 1), where jV j = n .
Question : Is G a partial t-tree ? i.e. does there exist G0 = (V;E0) such that E(G) � E(G0)
and G0 is a t-tree.

The above problem was shown to be NP-complete by Arnborg, Corneil and Proskurowski
[3].

The reduction is as follows. Let (G = (V;E); t) be an instance of the partial t-tree problem.
The corresponding instance of the load problem consists of the species set S = fseje 2 Eg and
one character �, with �(se) = fi; jg, where e = (i; j). Also, set l = t + 1. We claim that the
instance to the partial t-tree problem has a solution i� the corresponding instance to the load
problem has a solution. This can be seen by observing that G is the partition intersection graph
of the instance of the load problem and thus we can use Theorems 4.4 and 4.5.

Parts (iv) & (viii) : Next we show that the 2-load perfect phylogeny problem, where each of
the input characters is monomorphic, is NP-complete for �xed r � 3. This will also imply that
the Min Load Problem is NP-hard for �xed r � 3. The reduction is from the Partial Binary
Characters Problem (PBCP), which is de�ned as follows:

Input : An n�k matrixM , of n species and k characters, in which each entry ofM is an element
of the set f0; 1; �g.

Question : Can each � entry be set to 0 or 1 so that there exists a 1-load perfect phylogeny with
the new matrix ?

The above problem is just a reformulation of the Quartet Consistency Problem, which was
shown to be NP-complete by [36].

Given an instance I of PBCP, the instance of the load problem is constructed as follows.
Replace each � entry in the matrix de�ned by I , by a 2. Let C be the set of k characters and let
S be the set of n species de�ned by this new matrix. We will add 2k new characters and 9k new
species as follows. Initialize S0 = S and C0 = C. Now, for each � 2 C, de�ne two new characters
�1 and �2, and nine new species s1�; : : : ; s

9
� as follows

For each � 2 C0 (where � 6= �), set �(si�) = 2 , where 1 � i � 9.
For each s 2 S 0, set �1(s) = 2 and �2(s) = 2.
Also set s1� = (0; 0; 2),s2� = (0; 1; 2), s3� = (0; 2; 2), s4� = (2; 0; 0), s5� = (2; 1; 1), s6� = (2; 2; 2),
s7� = (1; 2; 0), s8� = (1; 2; 1), s9� = (1; 2; 2).
(Notation : si� = (x; y; z) indicates that �(si�) = x; �1(si�) = y; �2(si�) = z).
Update S0 = S 0 [fs1�; : : : ; s

9
�g and C

0 = C0 [f�1; �2g.

I 0 = (S0; C0) is the instance of the load problem. We claim that I has a solution i� I 0 has
a perfect phylogeny with load 2. The proof follows. Let T be a perfect phylogeny which is
a solution to instance I of PBCP. Each vertex in T is a k-tuple binary vector. We will �rst
construct the solution for the load problem when restricted to the initial species set S. We will
de�ne �:i = fsj�(s) = ig. For each � 2 C, note that there is an edge in T which partitions
�:0 from �:1. Identify the species which initially had a � entry for that character and replace
the state for that character by a 2. It can be veri�ed that by doing this for every character in
C and then relabelling the internal vertices so that the convexity property still holds, we get a
solution to the load problem for the initial species S and character set C. Extend the characters
set C to C0 by adding the new characters, which consists entirely of character state 2. This is
still a solution to the load problem for S with C0. Let T 0 be the tree obtained as a result of the

5

above modi�cations. We will now show how to add the additional 9k species. For each character
� 2 C, identify the edge e which partitions �:0 from �:1. Attach the 9 new species, associated
with �, as shown in Figure 1.

S α

7

S α

5S α

6

S α

2

S α

1

S α

3

S α

9

S α

4

S α

8

A B A Be

Fig. 1. Adding the 9 new species associated with �

Let T 00 be the tree �nally obtained after the addition of the 9k new species as described
above. It can be easily veri�ed that T 00 is a solution to instance I 0 of the load problem.

For the other direction of the proof, let T be a solution to instance I 0 of the load problem.
We �rst observe that in any solution to an instance of the 2-load problem involving 3-state
monomorphic characters in the input, every character � has associated with it an edge, which
splits �:0 from �:1, or, �:0 from �:2, or, �:1 from �:2. Observe that, in I 0, for each � 2 C, the
only partition possible is �:0 from �:1. This follows as a result of the constraints imposed by �1

and �2. Thus, to get a solution to the PBCP for instance I , we restrict T to the original set of
species S and characters C, and then for each character in C, replace the 2's that appear on the
0's side of the partition by 0's and the 2's that appear on the 1's side of the partition by 1's.

This completes the proof.

Part (vii) : If k is �xed then the 2-load perfect phylogeny problem can be solved in polynomial
time using the algorithms from Section 4.

This theorem shows that any polynomial time algorithm requires both k and l bounded
(under P 6= NP assumption).

4. Algorithms for Perfect Phylogenies from Polymorphic Characters. In this sec-
tion we present the two algorithms for inferring perfect phylogenies from polymorphic data when
we know the load bound. Although the algorithms we will present assume a universal load bound,
these algorithms can be easily modi�ed to allow individual load bounds for each character, and
will achieve comparable running times. For the sake of clarity, we will present these algorithms
as though the load bound is the same for each character; the runtimes of these algorithms when
implemented to handle variable constraints are given within their respective sections.

4.1. A Combinatorial Algorithm for �xed k and l. The algorithm we present is an
extension and simpli�cation of the algorithm of Agarwala and Fern�andez-Baca [2]. For the
remainder of this section the term perfect phylogeny refers to an l-load perfect phylogeny.

Because each character has only r states and each node can choose at most l of these in an
l-load perfect phylogeny, the number of possible labels for nodes in the tree is O(rlk). Let us call
this set S�, and note that S � S� (since otherwise some node in S has load greater than l). In
contrast to the algorithm in [2], we do not require that the internal nodes be labelled distinctly
from the species in S, and instead will permit species in S to be internal nodes because we can
transform any perfect phylogeny in which some species in S label internal nodes into a perfect
phylogeny in which all species label leaves by attaching a leaf for s to the internal node labelled
by s.

6

We need some preliminary de�nitions and facts.

Definition 4. The Extended Hamming distance of e = (x; y) is
P

c2C jc(x)4c(y)j,
where 4 denotes the symmetric di�erence. However, we will call this the Hamming distance,
understanding this to refer to the extended Hamming distance.

We note that if a perfect phylogeny exists for S, then one exists where the Hamming distance
on any edge is exactly one. We will seek a perfect phylogeny with this property. Working with
such perfect phylogenies allows us to quickly solve subproblems, because it limits the number of
ways a (maximally re�ned) perfect phylogeny can be constructed.

Definition 5. (See [23]) Given x 2 S�, the equivalence relation Ex is the transitive closure
of the following relation E0

x on S� fxg: aE0
xb if there exists character c such that (c(a)\ c(b))�

c(x) 6= ;. We denote this set of equivalence classes by (S � fxg)=x.

Some facts follow from this de�nition. Let x be an internal node of a perfect phylogeny T .

Fact 1: Two species in S which are in the same equivalence class of (S� fxg)=x must be in
the same component of T � fxg.

Fact 2: If a perfect phylogeny exists for S [fxg, then there is a perfect phylogeny T in
which the components of T � fxg have leaf sets which are the components of (S � fxg)=x.

Fact 2 does not necessarily hold simultaneously for all internal nodes of a perfect phylogeny
T . Instead the following fact is true for every internal node of T .

Fact 3: Consider T as rooted at x. Let G be an equivalence class of (S � fxg)=x, and let
y = lcaT(G). Let v be a node of T on the path from x and y (thus v = x or v = y is also
possible). Then there exist H1; : : : ; Ht in (S � fvg)=v such that H1 [� � � [Ht = G.

Proof. Let T be a perfect phylogeny for S, and x, G, y, and v as stated. Let H1; : : : ; Ht

be equivalence classes of (S � fvg)=v containing species from G. Clearly, to prove Fact 3 it will
su�ce to prove that all Hi are either disjoint from G or contained in G.

Suppose, by way of contradiction, that for some i; 1 � i � t, Hi contains species from G
and from S � G. We will show that this implies the existence of a character c 2 C and a state
a of c such that a 62 c(v), yet a 2 c(x) \ c(z) for some leaf z below v; such a character is not
convex on T , contradicting our assumption that T is a perfect phylogeny. This will show that all
equivalence classes Hi are either disjoint from or contained in G, and establish our claim.

Since Hi contains species in G and in S�G, and is an equivalence class of (S�fvg)=v, there
are species z1 2 Hi \G and z2 2 Hi�G and character c such that (c(z1)\ c(z2))� c(v) 6= ; (this
follows from (S � fvg)=v being the transitive closure of Ev). Let a 2 c(z1) \ c(z2)� c(v). Since
z1 and z2 are in di�erent equivalence classes of (S � fxg)=x, a 2 c(x). Now let z = lcaT (z1; z2).
This node z is in the subtree rooted at v, and satis�es a 2 c(z), because T is a perfect phylogeny
and z is on the path between z1 and z2. This is the character c and state a we stated we would
demonstrate, proving our claim.

We now present a dynamic programming algorithm for constructing perfect phylogenies from
polymorphic data. We de�ne the search graph SG = (V;E) as follows. Each vertex in V is
associated with a pair [G; x], where G = S or G 2 (S�fxg)=x, and represents the question: Does
G[fxg have a perfect phylogeny?". The edges of the search graph are of the form ([G; x][S; x]), and
all pairs of the form ([G1; x1]; [G2; x2]) whereG1 � G2 and x1 and x2 satisfy

P
c2C jc(x1)4c(x2)j =

1. There are O(rlk) nodes of type [S; x], and O(nrlk) of type [G; x] (because there are at most
n equivalence classes in (S � fxg)=x). Also, there are O(nrlk) edges of type ([G; x][S; x]), and
O(nlkrlk+1) of type ([G1; x1]; [G2; x2]), since the outdegree of every node is at most lkr.

Definition 6. Given a node [G; x], a set of nodes [H1; y]; [H2; y]; : : : ; [Hp; y] such that (a)
Hamming(x,y)=1 and (b) [iHi = G is called a bundle.

7

There can be multiple bundles going into [G; x], corresponding to the maximally re�ned
perfect phylogenies of G [fxg. If [H1; y]; [H2; y]; : : : ; [Hp; y] is a bundle for [G; x] and all the
subproblems have perfect phylogenies, then there is a perfect phylogeny for G[fxg with subtrees
Ti labelled by Hi. We can also have a bundle of just one edge (i.e. ([G,y],[G,x])); such a bundle
indicates the existence of a perfect phylogeny T for G [fyg in which the node corresponding to
y has only one child. This is necessary if we require all edges to have Hamming distance 1.

The Algorithm PHYLOGENY(S). First create the search graph GS . For each node [G; x],
determine its bundles. Note that some incoming edges ([G1; x1]; [G; x]) may not correspond to
any bundle because (S � fx1g)=x1 does not have the proper form (i.e. G may not be the union
of a subset of the components of (S � fx1g)=x1). Remove such edges. Now for each bundle,
compute the size of the bundle (number of edges) bi and set a counter counti equal to bi. Each
node [G1; x1] that is a predecessor of node [G2; x2] is given a pointer to the counter for its bundle.
We initialize a queue of \true" nodes as empty.

We locate each node [G; x] with jGj = 1, mark it as \true", and place it in the queue. We
then pull a node [G1; x1] out of the queue and process it as follows. For each edge in the search
graph ([G1; x1]; [G2; x2]), we decrement the counter for the appropriate bundle into [G2; x2]. If
the counter is decremented to 0, then all edges of the bundle have been set to true and node
[G2; x2] is added to the queue. When we have processed all edges out of node [G1; x1] we choose
another node from the queue and continue. If we ever try to enqueue a node of the form [S; x],
then the instance has a perfect phylogeny. If the queue is emptied without ever labelling a node
of this form as \true", then there is no perfect phylogeny.

As we enqueue \true" nodes, we build a topology for a perfect phylogeny for the subproblem
represented by that node, ultimately building one for the whole problem if it exists. We denote
the topology of the perfect phylogeny for [G; x] by T [G; x]. We enqueue [G; x] when a bundle
[H1; y]; [H2; y]; : : : ; [Hp; y] is found such that each [Hi; y] has been determined to be \true," and
hence a topology T [Hi; y] for each subproblem has already been determined. We create a new
node v. If x 2 S, then we label the node x. Otherwise it remains unlabelled for now. A
method for labelling these nodes is given in the proof of Theorem 4.2. We take each of the trees
T [H1; y]; T [H2; y]; : : : ; T [Hp; y], merge the roots into a single node, and make this node a child of
node v. Once [G; x] has been enqueued, we construct the tree T [G; x] and we do not consider
any more edges entering [G; x]. Thus we only compute one topology per \true" subproblem.

Lemma 4.1. If there exists a perfect phylogeny for S[fxg, then the algorithm PHYLOGENY
assigns true to [G; x], for each G 2 (S � fxg)=x.

Proof. The proof is by induction on jGj. The base case is trivial. Suppose that the claim
holds for all nodes [G0; x0] where jG0j < k. Consider now the node [G; x] where jGj = k. Let T
be a perfect phylogeny for S [fxg. Assume that T is a perfect phylogeny where the hamming
distance between every pair of adjacent nodes in the tree is one. Consider T as rooted at x,
and let y = lcaT (G). By Fact 3, for each node v in the path between x and y, there is a set of
equivalence classes of (S�fvg)=v whose union equals G. Because y = lcaT(G), y is the �rst node
below x for which there are classes H1; H2; : : : ; Hp, p > 1, of (S � fyg)=y such that [Hi = G.
For all i, Hi [fyg has a perfect phylogeny. Since jHij < jGj it follows that the algorithm has
already determined (correctly) that [Hi; y] is true for each i = 1; 2; : : : ; p.

We now need to show that for every node z on the path from y to x, that [G; z] is set to
true. This will prove that [G; x] is true.

Consider the node z = parent(y). We have two cases to consider, depending upon whether
z and x are distinct. We consider the �rst case, where z = x. The edges ([Hj; y]; [G; x]); j =
1; 2; : : : ; p constitute a bundle for [G; x] = [G; z], so that [G; x] = [G; z] is also set to true. We

8

now consider the second case, where z 6= x. In this case, G is an equivalence class of (S�fzg)=z,
so that [G; z] is also a subproblem, and ([G; y]; [G; z]) is an edge in the search graph. Since [G; y]
is set to true (by the above analysis) the algorithm also sets [G;w] to true for all w such that
[G;w] is a vertex in the search graph. Thus, for each node w on the path from y to x, [G;w] is
set to true; setting w = x yields the result.

Theorem 4.2. The algorithm PHYLOGENY(S) runs in time O(rlk+1lkn), and returns
\yes" if and only if S has a perfect phylogeny.

Proof. If S has a perfect phylogeny, then there is some species x that can be an internal node
of the tree. By Lemma 4.1, the algorithm will return \yes". Suppose now that the algorithm
returns the answer \yes", and suppose the leaf-labelled tree produced is D. We now show that the
internal nodes of this tree can be labelled so as to create a perfect phylogeny T with load l. Given
a character � and an unlabelled node v, we assign �(v) to be the states i such that for some pair
of leaves x and y in di�erent subtrees of D � fvg, i 2 �(x)\ �(y). This clearly creates a perfect
phylogeny, and we now need to show that the load is bounded by l. Suppose for some node v the
load exceeds l, so that (without loss of generality) for each of the �rst l+1 states, 1; 2; : : : ; l+1, of
�, there are at least two subtrees of v with that state. The node v represents a node [G; y] in the
search graph, and since it appears in D, there is a bundle [G1; z]; [G2; z]; : : : ; [Gt; z] such that all
nodes in the bundle are set to true and z and y have distance one. By the construction of D, the
subtrees of v have leaf sets G1; G2; : : : ; Gt; S�G where Gi 2 (S� fzg)=z for i = 1; 2; : : : ; t (from
which it also follows that S�G is the union of the remaining equivalence classes of (S�fzg)=z).
Also by construction, z had load at most l, so that z is labelled with at most l �-states. Thus, at
least one of the states 1; 2; 3; : : : ; l+ 1 is missing from z; without loss of generality let it be l+ 1.
It is easy to see that if Gi and Gj (for i 6= j) both have leaves with state l+ 1, then they would
not be separate equivalence classes in (S�fzg)=z, and similarly if some Gi and S�G both have
leaves with state l + 1. Hence, this labelling has load bounded by l.

The search graph can be constructed in time O(nlkrlk+1) (see [2]). The rest of the algorithm
will run in linear time in the size of the graph (O(nlkrlk+1)).

Comment: When individual load bounds lc are given, the algorithm can be modi�ed to run
in O(rL+1Ln), where L =

P
c2C lc.

4.2. A Graph-Theoretic Algorithm for Fixed k and l. In this section we give a graph-
theoretic algorithm for the l-load perfect phylogeny problem. The algorithm we present is based
upon a characterization of intersection graphs derived from l-load perfect phylogenies as a partic-
ular kind of vertex-colored triangulated (i.e. chordal) graphs. Based upon this characterization
we will derive an e�cient algorithm for the l-load perfect phylogeny problem when we can �x
both l and k.

4.2.1. Preliminary De�nitions. Let G = (V;E) be a graph. A vertex coloring of G is
a function color : V ! Z. We do not require that color be a proper coloring (a coloring function
is proper if and only if 8(v; u) 2 E, color(v) 6= color(u)).

The neighbour set �(v) of a vertex v is the set of all vertices in the graph adjacent to v.
A vertex v is simplicial if �(v) is a clique.

Given a graph G = (V;E) and a vertex coloring c : V ! Z, a monochromatic clique

in G is a clique with vertex set V0 � V such that color(v) = color(w) for all v; w 2 V0. A
graph G = (V;E) is triangulated if it has no induced cycles of size four or greater. Given a
vertex-colored graph G = (V;E), we say that G is l-triangulated if G is both triangulated and
has no monochromatic cliques of size greater than l. We say that G has an l-triangulation
G0 = (V;E 0) if E � E0 and G0 is l-triangulated.

9

Let I = (S;C) be an input to the phylogeny problem. For � 2 C, we de�ne �i = fs 2 S : i 2
�(s)g. ThePartition Intersection Graph of I is the vertex-colored graph (GI = (V;E); color)
de�ned by V = f�i : � 2 Cg; E = f(�i; �j) : �i \ �j 6= ;, where i 6= j if � = �g and for
� 6= �; color(�i) = color(�j) 6= color(�s). Note that because the input I can have load greater
than one, the coloring function color may not be proper.

The main results leading to the algorithm can be paraphrased as follows:

� Let I be an input to the l-load perfect phylogeny problem. Then there is an l-load perfect
phylogeny for I if and only if the partition intersection graph GI has an l-triangulation.

� Given a graph G which is vertex-colored using k colors (not necessarily properly colored),
we can determine in time polynomial in �xed k and l whether G has an l-triangulation
and construct the l-triangulation when it does.

� Given an l-triangulation G0 of GI , we can construct an l-load perfect phylogeny in poly-
nomial time.

As a consequence, we will provide an algorithm for determining if an l-load perfect phylogeny
exists for k polymorphic characters de�ned on n species in O((rk3l2)kl+1 + n(kl)2) time.

4.2.2. Characterization of l-triangulated graphs. There is a well known characteriza-
tion of triangulated graphs as intersection graphs of subtrees of a tree [7]. In this section, we will
look at an extension of this particular characterization for l-triangulated graphs.

The following lemma will be useful in the proof of the characterization and also in later
theorems. It describes the number of simplicial vertices in a triangulated graph. The proof is
simple and is discussed in [17].

Lemma 4.3. Let G be a triangulated graph. Then G has at least two nonadjacent simplicial
vertices.

We can make a similar statement about l-triangulated graphs since these graphs are, by
de�nition, also triangulated.

We now present the characterization of l-triangulated graphs.

Theorem 4.4. Let G = (V (G); E(G)) be a vertex-colored graph. Then G is l-triangulated
i� 9 a tree T = (V (T); E(T)) together with functions ' : V (G)! fsubtrees of Tg and � :

V (T)
bijection
! fmaximal cliques of Gg such that

1. (v; w) 2 E(G) i� '(v)\ '(w) 6= ;
2. '(v) = fu 2 V (T) : v 2 �(u)g
3. 8v 2 V (T); �(v) has at most l vertices of the same color

Proof. Suppose a tree T exists together with the functions ' and �. We will �rst show that
this, together with conditions 1 and 2, imply that G is triangulated. Let � = a1a2 : : : aia1; i � 4
be a simple cycle in G. We will show that � has a chord. Working in mod i arithmetic, it can be
seen that '(aj)\'(aj+1) 6= ;; 81 � j � i. Let '(aj) = Tj . Thus V (Tj)\V (Tj+1) 6= ;; 81 � j � i.
It can be seen that 9j such that V (Tj�1) \ V (Tj) \ V (Tj+1) 6= ;, as otherwise, T will contain
a cycle. Let u 2 V (Tj�1) \ V (Tj) \ V (Tj+1). Thus �(u) contains aj�1; aj and aj+1 and so,
(aj�1; aj+1) 2 E(G). Hence � contains a chord and so G is triangulated.

From condition 3, G can have maximummonochromatic clique size l. ThusG is l-triangulated.

We now prove the converse by induction on jV (G)j. Suppose the statement is true for all
graphs having less than n vertices. Let G be a connected graph with n vertices and suppose G is
l-triangulated. Now if G is complete, then T is a single vertex and the result is trivial. Assume
that G is connected but not complete. Since G is l-triangulated, from Lemma 4.3, it contains
a simplicial vertex v. Let A = fvg [�(v). Note that A is a maximal clique of G and contains

10

monochromatic cliques of size at most l. Let B = fu 2 A : �(u) � Ag and let X = A � B.
Note that B;X and V (G) � A are nonempty since G is connected but not complete. Observe
that G0 = Gj(V (G)�B) is l-triangulated and has fewer vertices than G. Applying the induction
hypothesis, let T 0 be the tree, and '0 and �0 be the functions satisfying the conditions of the
Theorem for G0. There are two cases to handle here. Case 1 is when X is a maximal clique in
G0 and Case 2 is when it is not. (Note that X is a clique in both G and G0)

Case 1 : We can obtain T , � and ' from T 0, �0 and '0 as follows : identify that vertex
v0 2 V (T 0) such that �0(v0) = X . De�ne �(w) = �0(w); 8w 6= v0 and �(v0) = A. De�ne
'(y) = '0(y); 8y =2 B and '(y) = fv0g; 8y 2 B.

Case 2 : Identify that vertex v0 2 V (T 0) such that �0(v0) � X . Create a new vertex v and
connect it to v0. De�ne �(w) = �0(w); 8w 6= v and �(v) = A. De�ne '(y) = fvg ['0(y); 8y 2 X
and '(y) = fvg; 8y 2 B.

Note that in both cases, A contains at most l vertices from the same color class and that T ,
� and ' satisfy the stated conditions.

Theorem 4.5. Given an instance I of the l-load perfect phylogeny problem, let GI be the
corresponding partition intersection graph. Then I has a solution i� GI has an l-triangulation.

Proof. Let T be the solution to the instance I of the l-load perfect phylogeny problem. By
Theorem 4.4, there is a graph G which is l-triangulated and is related to T as mentioned in that
Theorem. It can be seen that G is a supergraph of GI . Thus GI can be l-triangulated.

Suppose GI can be l-triangulated. Let G be the l-triangulation of GI . Then there is a tree
T associated with G satisfying the conditions of Theorem 4.4. It can be seen that in T , all the
character states are convex and each vertex in T has a label set containing at most l vertices of
the same color. Thus T is a solution to the instance I of the l-load perfect phylogeny problem.

4.2.3. l-triangulating a vertex-colored graph. In this section we turn to the problem
of l-triangulating a vertex-colored graph. The solution to this problem makes use of several
properties of triangulated graphs and also of a particular class of triangulated graphs called
k-trees.

Further de�nitions: . Triangulated graphs admit orderings, v1; v2; : : : ; vn, on the vertex set
such that for each i, Ni = �(vi) \ fvi+1; vi+2; : : : ; vng is a clique [17]. These orderings are called
perfect elimination schemes.

Consider a graph G = (V;E) with jV j = n � k that contains at least one k-clique.
Such a graph G is a k-tree if the nodes of G can be ordered v1; v2; : : : ; vn whereby �G(vi) \
fvi+1; vi+2; : : : ; vng is a k-clique for all i with 1 � i � n � k. A k-tree also has the following
recursive de�nition: the complete graph on k vertices is a k-tree; if G = (V;E) is a k-tree, and
S � V is a k-clique, then the graph formed by adding a new vertex v and attaching it to each
vertex in S is also a k-tree. Each k-tree may be constructed using several di�erent sequences of
these operations. The initial set S � V is called a basis for the k-tree.

For a graph G = (V;E) and vertex-separator S � V with C a component of G � S, we
de�ne C [cl(S) to be the graph formed by adding to the subgraph of G induced by C [S

su�cient edges to make S into a clique. Let G = (V;E) be a k-colored graph. We say that G
is a (k,l)-partition intersection graph if (a) the maximum monochromatic clique size is l,
and (b) G is edge covered by kl-cliques. Note that the maximum clique size in a (k; l)-partition
intersection graph is kl.

The algorithm we present for l-triangulating a vertex-colored graph is based on dynamic
programming. We will need the following lemmas in our algorithm.

11

Lemma 4.6. Let G = (V;E) be a connected graph which is vertex-colored (not necessarily
properly colored) using k colors with jV j � kl, where l is the maximum monochromatic clique
size in G. Let the maximum clique size in G be kl. Then G has an l-triangulation i� it has an
l-triangulation that is a (kl� 1)-tree.

Proof. Clearly, if G has an l-triangulation that is a (kl�1)-tree, then G has an l-triangulation.

Now suppose that G has an l-triangulation. We will use induction to show that G has an
l-triangulation that is a (kl � 1)-tree. Base case is when jV (G)j = kl, i.e., G is a clique. This is
already a (kl � 1)-tree and it is l-triangulated.

Suppose the statement is true for all graphs with less than n vertices (n > kl), and containing
maximum monochromatic clique size l and maximum clique size kl.

Let G be a graph with jV (G)j = n. Since G can be l-triangulated, let G0 be the l-triangulation
of G. From Lemma 4.3, there are at least two nonadjacent simplicial vertices in G0. Pick that
simplicial vertex v 2 V (G0) such that G0 � fvg still has maximum clique size kl. Let �G0(v)
denote the neighbour set of v in G0. Observe that G0�fvg is an l-triangulation of G�fvg. Thus,
by the induction hypothesis, G0 � fvg can be l-triangulated into a (kl � 1)-tree. Let G00 be the
(kl � 1)-tree. Let � be a perfect elimination scheme for G00. Look at x which is the �rst vertex
in �G0(v) to appear in �. There are two cases to handle here. Case 1 is when x is within the
sequence of last kl vertices appearing in �. In this case make v adjacent to all vertices in the
last kl positions of �, except with some vertex u =2 �G0(v) and color(u) = color(v). The resulting
graph is an l-triangulated (kl� 1)-tree. Case 2 is when x is not within the sequence of the last
kl vertices appearing in �. Let A be the set of vertices following x which are neighbours of x.
Clearly, (�G0(v)� x) � A. Make v adjacent to all vertices in �G0(v) and also to all except the
one vertex u appearing in A � �G0(v) such that color(v) = color(u). The resulting graph is an
l-triangulated (kl � 1)-tree.

Thus we have that if G has an l-triangulation then it has an l-triangulation which is a
(kl� 1)-tree.

Lemma 4.7. Let G be a (k; l)-partition intersection graph. Then G can be l-triangulated if
and only if there exists a set K � V of size (kl� 1) which is a separator for G such that for all
components C of G�K, C [cl(K) can be l-triangulated.

Proof. In Lemma 4.6, it was shown that G has an l-triangulation i� it has an l-triangulation
G0 which is a (kl � 1)-tree. If such a G0 exists, then G0 has a separator of size kl � 1 which is a
clique by [31]. The converse is straightforward.

We are thus motivated to make the following de�nition:

Definition 7. Let G = (V;E) be a vertex-colored graph with k colors and with maximum
monochromatic clique size l. A potential basis for G0, the l-triangulation of G, is a subset V0 � V
such that (a) jV0j = kl � 1 and (b) V0 is a vertex separator for G. If V0 � V satis�es both these
conditions then we say that V0 is a potential basis for G, and call V0 a pb-set.

Our dynamic programming algorithm will solve the l-load problem when the input is a (k; l)-
partition intersection graph. As our input graphs may not be (k; l)-partition intersection graphs,
we need the following result:

Lemma 4.8. Let G = (V;E) be vertex-colored with a coloring function color (using k colors)
and assume that the maximum monochromatic clique size is l. Then there exists a (k; l)-partition
intersection graph G0 = (V 0; E0) such that the following is true:

� For every pb-set S � V 0 containing (k � 1) colors and every component C of G0 � S,
C [S has all k colors present,

� G can be l-triangulated if and only if G0 can be l-triangulated, and

12

� The number of vertices in G0 is jV j+ jEj(kl� 2).

Proof. For each edge e = (v; w) in E, add kl � 2 vertices and su�cient edges so that the kl
vertices together form a clique with k color classes of size l. Call the resultant graph G0.

Clearly, jV (G0)j = jV j+ jEj(kl�2). Also, since G0 is now a (k; l)-partition intersection graph,
every edge in G0 is part of some kl-clique. Thus, for every pb-set S of G0 containing (k�1) colors
and for every component C of G0 � S, C [S will have all k colors present.

Finally, suppose G0 has an l-triangulation G0
1. Then the subgraph of G0

1 induced by the
vertex set V (G) is also l-triangulated [17]. Thus G can be l-triangulated. For the other direction,
suppose G has an l-triangulation G1. Identify the edges in G1 which were present in G and make
each of the edges a part of a new kl-clique. This de�nes a graph G�

1 which can be veri�ed to
be a super-graph of G� and is also l-triangulated. Thus G can be l-triangulated i� G0 can be
l-triangulated.

We now have the basis for an algorithm for computing l-triangulations of vertex-colored
graphs:

Algorithm B: l-triangulating k-colored graphs

Step 1: Embed G in a (k; l)-partition intersection graph, G0.
Step 2: Compute all pb-sets V0 � V (G0), and all components C ofG0�V0. The subproblems

C [cl(V0) are then bucket sorted by size.
Step 3: Use dynamic programming to determine the answers for each subproblem in turn.
Step 4: If there is a pb-set V0 such that for all components C of G0 � V0, C [cl(V0) is has

an l-triangulation, then return (Yes), else return (No).

It is clear that we need to indicate how we implement Step 3.

4.2.3.1. Solving Subproblems using Dynamic Programming We have thus reduced
the problem of determining whether the graph G can be l-triangulated to looking at graphs of
the form C [cl(S), where S is a pb-set, C is one of the components of G0 � S, and we presume
G0 to be a (k; l)-partition intersection graph.

Rose et. al [32] proved the following lemma about triangulated graphs.

Lemma 4.9. Let G be a triangulated graph, � a perfect elimination scheme for G, and let
a; b be vertices in G. If there is a path P from a to b in G such that every vertex in P � fa; bg
comes before a and b in the ordering �, then (a; b) is an edge in G.

We also observe the following lemma about (kl� 1)-trees.

Lemma 4.10. If G can be l-triangulated into a (kl � 1)-tree G0, then any (kl � 1)-clique in
G0 can be a basis for G0.

We now prove the following theorem. The proof for this theorem is along the same lines as
the proof for Theorem 1 appearing in [27].

Theorem 4.11. Let G = (V;E) be a (k; l)-partition intersection graph containing at least
kl + 1 vertices, S0 pb-set of G, and let C be a component of G � S0. Then C [cl(S0) can be
l-triangulated if and only if there exists a family F of l-triangulated (kl � 1)-trees and a vertex
v 2 C such that

1. For every F 2 F there exists a vertex x 2 S0 such that V (F) = C0 [cl(S) where
S = S0 [fvg � fxg, C0 is both a component of G� S and of C [cl(S0)� S,

2. jV (F)j < jV (C [cl(S0))j, for every F 2 F .
3. Every two graphs in F intersect only on S0 [fvg
4. Gj(C [S0) is contained in

S
F2F F .

13

Proof. It is easy to see that if these conditions hold, we can combine the l-triangulated (kl�1)-
trees in F into one l-triangulated (kl � 1)-tree covering C [cl(S0) since they only intersect on
S0 [fvg. Thus, we need only show the converse.

So suppose that G1 = C [cl(S0) can be l-triangulated. Let G0 be an l-triangulation of
C [cl(S0). By Lemma 4.10, the (kl � 1)-clique S0 can be a basis for G0. Let v be the vertex
added to the basis S0 in the construction of G0, and let S 0 = S0 [fvg. Thus, there is a perfect
elimination scheme for G0 in which the vertices of S0 occur at the end. We will show that we can
decompose C [cl(S0) into the union of l-triangulated (kl� 1)-trees, TK, each of which is based
upon a (kl � 1)-clique subset K � S0. We will then show that each such K forming the basis of
one of these l-triangulated (kl�1)-trees will be a separator for G, so that TK�K has components
C1; : : : ; Cr. We can then in turn write each TK as the union of possibly smaller (kl � 1)-trees,
T i
K = TK j(Ci [K). These l-triangulated (kl� 1)-trees are the ones of interest.

G0 is built by adding vertices, one at a time, and making each new vertex adjacent to every
vertex in some (kl� 1)-clique. We will de�ne Gi to be the subgraph of G0 induced by the vertex
set fvi; vi+1; : : : ; vjV jg. Thus, GjV j�kl+2 is a (kl � 1)-clique, and to form Gi, we make vertex vi
adjacent to every vertex in some (kl � 1)-clique in Gi+1. We will show that we can assign to
each added vertex vi (with i < (jV j� kl+1)) a label L(vi) the name of a (kl� 1)-clique K � S0,
so that for each K � S0, the subgraph TK = GjVK, where VK = fv : L(v) = K or v 2 Kg, is
an l-triangulated (kl � 1)-tree. We will also show that every edge e in Gj(C � fvg) is in one of
these (kl� 1)-trees, and that the (kl� 1)-cliques K forming the basis of the (kl� 1)-trees TK are
separators of G. We will also need to show that the component C0 of C[cl(S0)�L(v) containing
v is a component of G� L(v). This will prove our assertions.

We �rst need to show how we assign vertices to (kl � 1)-clique subsets of S0. Let L be the
assignment function we wish to de�ne for every vertex not in S0. Suppose we have constructed
the graph Gi+1 and are now adding vi to the graph, and making it adjacent to every vertex in
some (kl � 1)-clique, R. If R � S0, then we set L(vi) = R. Otherwise, the vertices in R will
consist of (perhaps) some unlabelled vertices (these will be in S0) and at least one labelled vertex.
If all of the labels in R agree, then this is the label that we will assign to vi. On the other hand,
suppose for our construction, when we make vi adjacent to every vertex in the (kl� 1)-clique R,
not all the labels are the same, and that this is the �rst vertex in this construction for which this
happens. In this case, for some vertices vj and vk in R, L(vj) = X and L(vk) = Y , for distinct
subsets X; Y � S0. Without loss of generality, we can assume that i < j < k. In constructing
Gj we made vj adjacent to every vertex in some (kl � 1)-clique C � Gj+1. Note that vk 2 C

since vj and vk are adjacent and k > j. Since we were able to set L(vj) = X unambiguously,
this means that either every vertex in C was unlabelled, and thus X = C, or that the labelled
vertices were all labelled X . Since we have assumed vk was labelled, we can infer that L(vk) = X

and hence X = Y . Thus, this assignment of vertices to (kl � 1)-clique bases is well-de�ned,
and each label denotes a subset K of S0. It is easy to see that the subgraph TK = G0jVK (for
VK = fv : L(v) = K or v 2 Kg) is an l-triangulated (kl� 1)-tree, and that TK is based upon the
set K.

By our construction of the labelling function, it is also clear that no edge in G has di�erent
labels at its endpoints, so that every edge in Gj(C�fvg) is in exactly one l-triangulated (kl�1)-
tree, TK.

We now show that each (kl�1)-clique K � S 0 forming the basis of an l-triangulated (kl�1)-
tree in F is a separator for C [cl(S0) and for G. We �rst show that K is a separator for
C [cl(S0). Suppose to the contrary, so that for some set K � S forming the basis of an l-
triangulated (kl� 1)-tree TK, C [cl(S0)�K is connected. Let K = S � fxg. We will show that
there is no path from x to any vertex in C [cl(S0)�K. Let �0 be a perfect elimination scheme

14

for TK [fxg. Clearly, we can assume that x is the last vertex in �0 to occur before the vertices of
K. Let a be the vertex immediately preceding x. If there is a path from x to a in C [cl(S)�K,
then the edge (a; x) is in G by Lemma 4.9. But then S [fag is a (kl + 1)-clique, contradicting
that G has a supergraph which is a (kl � 1)-tree. The proof can be modi�ed to show that K is
a separator for G as well. Hence the (kl � 1)-trees T i

K each contain fewer vertices than G.

We now complete our proof by showing that the components of C [cl(S0) � K are also
components of G � K, where K is the basis of a (kl � 1)-tree F 2 F . Recall that by our
construction, each such basis K is a set L(a) for some a 2 V (F)�K. So let C0 be a component
of C [cl(S0)� L(a), for some a 2 C. It is easy to see that L(a) = S0 [fvg � fxg is a separator
for C [cl(S0), and that every component X of C [cl(S0) � L(a), such that x 62 X , is also a
component of G�L(a). Thus, we will show that x 62 C0, so that C0 is a component of G�L(a).

Suppose x 2 C0. Then x is adjacent to at least one vertex z of C0�fxg. When we labelled the
vertex z we labelled it with L(a) implying that x 2 L(a), and yet, by our construction, x 62 L(a).
Hence, the component C0 of C [cl(S0) � L(a) containing a is a component of G � L(a). This
completes our proof.

We can now state the following theorem:

Theorem 4.12. Let G = (V;E) be a (k; l)-partition intersection graph with jV j � kl + 1.
Let S0 be a pb-set and let C be a component of G� S0. Then C [cl(S0) can be l-triangulated if
and only if there exists some vertex v in C and a family of pb-sets M such that the following is
true:

1. For each M 2 M, M � S0 [fvg, and M is a separator for C [cl(S0) and for G,
2. For each vertex x 2 S0 there is a Mx 2 M and a component Cx of G �Mx and of

C [cl(S0)�Mx such that jCxj < jCj and Cx [cl(Mx) can be l-triangulated.
3. Every edge in C is in exactly one Cx given above.

Proof. Suppose that C [cl(S0) can be l-triangulated, and let G0 be a l-triangulation of
C [cl(S0) From Theorem 4.11, we infer that there is a vertex v 2 C such that the subgraph
of G0 induced by the vertices of C [cl(S0) can be written as the union of the l-triangulated
(kl� 1)-trees TK based upon pb-sets K � S 0 = S0 [fvg. We will let M consist of these subsets
K, which form the bases of the (kl � 1)-trees TK . From Theorem 4.11, it can be seen that M
satis�es the conditions above.

For the converse, if such a family M = fMi : i 2 Ig of pb-sets exists, then there exists v 2 C
such that the graph C [cl(S0) is contained in the union of l-triangulatable graphs of the form
Cx [cl(M), where each M 2 M is a pb-set and a subset of S0 [fvg and Cx is a component of
G �M and a proper subset of C. Since G is a (k; l)-partition intersection graph, these graphs
each have all k colors and have monochromatic cliques of maximum size l and also have cliques
of maximum size kl. Hence they can be completed to l-triangulated (kl � 1)-trees Tx, where
V (Tx) = V (Cx [M). This family of (kl� 1)-trees F = fTx : x 2 C �fvgg shows that C [cl(S0)
can be l-triangulated.

We can now conclude with our �nal theorem.

Theorem 4.13. Let G = (V;E) be a (k; l)-partition intersection graph and let S � V be
a pb-set and C be a component of G � S. Then we can determine whether C [cl(S) can be
l-triangulated simply by knowing the \answer" for each smaller graph of the form C0 [cl(S0),
where S0 is a pb-set and C0 is a component of G� S0.

4.2.3.2. Implementation details of the dynamic programming algorithm (i.e. Step
3 of Algorithm B)

DATA STRUCTURE: A family X = fMig of pb-sets. For each set Mi in X , and for each of

15

the ri components Cj of G�Mi, we denote by M
j
i , j = 1; 2; : : : ; ri, the subgraph of G induced

by Cj [Mi with the addition of edges required to make Mi into a clique. Each such M j
i can

either be l-triangulated or cannot be. This will be determined during the algorithm, in order of
increasing size of the M j

i 's, and an appropriate answer (\yes," or \no") will be stored for each.

Recall that Step 2 of Algorithm B sorts the subproblems Cj [Mi using bucket sort.

Algorithm: (the statements in italics denote comments)

(* Examine the M j
i in turn by order of number of vertices,

and determine whether each can be l-triangulated.
Any graph containing all k colors with
l vertices per color class can be l-triangulated *)

IF M
j
i has kl vertices with l vertices per color

class, THEN set its answer to \Yes".

IF M j
i has kl vertices such that there is one color

class with more than l vertices, THEN set its answer to \No".

(* We will now apply Theorem 4.12 to each graph M j
i

and search for a vertex v 2M j
i �Mi

and family M satisfying the conditions of Theorem 4.12

to determine whether M j
i can be l-triangulated *)

FOR EACH graph M j
i in order of size h > kl DO

FOR EACH v 2M j
i �Mi such that

Mi [fvg has no color class containing more than
l vertices, DO
(* We now check whether for vertex v there is a
family M satisfying the conditions of Theorem 4.12 *)

Examine all sets Mm of vertices in Mi [fvg which are pb-sets for G
FOR EACH such Mm, let Lm be the
union of the M j

m which can be
l-triangulated
IF the union of the Lm (for each

Mm above) contains M j
i �Mi � fvg

THEN set the answer of M j
i to

\Yes" and EXIT-DO
END-DO

IF no answer was set for M j
i

THEN set the answer for M j
i to \No"

(* Applying Lemma 4.7 now*)
IF G has a vertex-separatorMi such that

all M j
i graphs have the answer \Yes,"

THEN (G can be l-triangulated)
RETURN (Yes)

ElSE RETURN (No)
END-DO

end of algorithm

Note that the above algorithm can be easily modi�ed to give back the l-triangulation, if it
exists.

16

Run time analysis of Algorithm B. Let G = (V;E) be the (k; l)-partition intersection
graph which is given as input to Step 2 of Algorithm B. Then, in Step 2, in the worst case the
algorithm checks all subsets of size kl� 1 of which there are O(jV jkl�1). Each of these is checked
for being a pb-set, which involves checking the set to see if it is a vertex separator. This takes
O(jV j2) for each subset. Bucket sorting the subproblems takes a total of O(jV jkl). Step 3, which
involves checking to see if a subgraph satis�es the conditions of Theorem 4.12 takes time linear
in the number of vertices in the subgraph. Thus, the overall complexity is O(jV jkl+1).

We summarize with the following:

Theorem 4.14. Let G = (V;E) be a (k; l)-partition intersection graph. We can in O(jV jkl+1)
time determine whether G can be l-triangulated, and produce the l-triangulation when it exists.

4.2.4. Summary of the algorithm to solve the l-load perfect phylogeny problem.
Given I , compute the Partition Intersection Graph, GI , and embed GI in a (k; l)-partition
intersection graph G0

I . Use Algorithm B to determine if G0
I can be l-triangulated, and compute

the triangulation G = (V;E) if it exists. If there is no l-triangulation, Return No. Else, use G to
compute the l-load perfect phylogeny T .

We now briey discuss how T can be constructed from the l-triangulated graph G = (V;E).
Recall that T is related to G by Theorem 4.4.

Let � = v1v2:::vjV j be a perfect elimination scheme for G. We will construct the tree in-
ductively where Ti is the tree corresponding to Gjfvi; vi+1; ::; vjV jg. Thus T1 = T is the tree we
seek.

Let Ap = �(vp) \ fvp+1; vp+2; ::; vjV jg. Inductively, assume we are at vertex vj in � and
assume we have the tree Tj+1. Let vi be the �rst vertex following vj (i.e. j < i) in � which is
in �(vj). Note that (Ai[fvig) � Aj . Since vj and vi are simplicial in Gjfvj; vj+1; vj+2; ::vjV jg and
Gjfvi; vi+1; vi+2; ::vjV jg respectively, it follows that jfvig[Aij > jAj j i�, in Gjfvj; vj+1; vj+2; ::vjV jg,
the subgraph induced by fvig [Ai is a maximal clique.

Case 1: If the subgraph induced by fvig[Ai is a maximal clique then it follows that fvjg[Aj

also induces a maximal clique in Gjfvj ; vj+1; vj+2; ::vjV jg. Thus, from Theorem 4.4, in Tj , there
will be a vertex which corresponds to fvjg [Aj . To get Tj from Tj+1, we add a new vertex u to
V (Tj+1) and add an edge from u to the vertex u0 2 V (Tj+1) which corresponds to the maximal
clique fvig [Ai.

Case 2: If jfvig[Aij = jAjj, then the subgraph induced by fvig[Ai in Gjfvj ; vj+1; vj+2; ::vjV jg
is not a maximal clique. Let vq (j � q) be the �rst vertex to the left of vi in � such that vi 2 �(vq)
and jfvig [Aij = jAqj. If q = j, then to get Tj , we relabel the vertex u 2 V (Tj+1) corresponding
to the maximal clique fvig [Ai to now correspond to fvjg [Aj . If q 6= j, then to get Tj from
Tj+1, we create a new vertex corresponding to fvjg[Aj and connect it to the vertex u0 2 V (Tj+1)
which corresponds to fvqg [Aq.

It can be seen that the above operations of obtaining Tj from Tj+1 can be implemented in
O(deg(vj)), where deg(v) is the degree of vertex v. This can be achieved by associating with
every vertex vr 2 � (j < r), two variables, one which corresponds to the vertex u 2 V (Tr) such
that u represents the maximal clique fvrg[Ar in Gjfvr; vr+1; ::; vjV jg and another variable which
corresponds to a vertex vs in � such that vs is the �rst vertex to the left of vr for which vs 2 �(vr)
and jfvrg [Arj = jAsj.

The time taken for producing a perfect elimination scheme for G is O(jV j+ jEj) [17]. From
the discussion above, it can be seen that that T can then be constructed in O(jV j+ jEj). Hence
we have the following theorem.

17

Theorem 4.15. Let G = (V;E) be a vertex colored graph which is l-triangulated. Then the
tree T which satis�es the conditions in Theorem 4.4 can be constructed in O(jV j+ jEj).

Theorem 4.16. The l-load perfect phylogeny problem for n species and k polymorphic char-
acters can be solved and the l-load perfect phylogeny constructed (when it exists) in O(nk2l2 +
(rk3l2)kl+1) time.

Proof. Let I be the input to the l-load perfect phylogeny problem, and GI = (V;E) be the
partition intersection graph. Then jV j = rk, and it can be shown that if jEj > kljV j then there
is no l-triangulation[27]. Hence jEj � k2lr. Let G0

I = (V 0; E0) be the (k; l)-partition intersection
graph embedding of GI , and note that jV 0j = jV j+ jEj(kl� 2) � rk + k3l2r. The rest follows.

Comment: In the case where individual load bounds lc are given, the algorithm can be
modi�ed to run in O(nL2 + (rkL2)L+1), where L =

P
c2C lc.

4.3. Inferring Perfect Phylogenies fromMixed Data. In the previous section we pre-
sented two algorithms for inferring perfect phylogenies from polymorphic character data; these
algorithms had running times which were exponential in L, where L =

P
c2C lc, and lc is the

load bound for the character c. We can use these algorithms directly for sets of characters when
some of the characters are monomorphic and some are polymorphic, but the expense would be
too large. This follows since in typical data sets, the number of characters k is the largest param-
eter, often in the hundreds or thousands; since L > k, algorithms that are exponential in L are
prohibitively costly. Instead, we propose a method which should be e�cient when the number of
monomorphic characters is su�cient to reduce the number of minimal perfect phylogenies to a
small number. In practice, as the majority of the characters will be monomorphic, this is likely
to be very e�cient. The method we propose involves two steps, and is e�cient when the number
of minimal perfect phylogenies generated from the monomorphic characters is small.
Algorithm C:

Step 1: Infer all minimal perfect phylogenies from the monomorphic characters, using [23].
Step 2: Determine whether any of the minimal perfect phylogenies obtained in Step 1 can be
re�ned so that each polymorphic character is convex on it within the speci�ed load bound.

Discussion of Step 1:. The algorithm in [23] has running time which is O(22r+r
2

kr+3
m +

Mkmn), where M is the number of minimal perfect phylogenies and km is the number of
monomorphic characters. This is theoretically expensive if r, the number of states, is too large;
however, in practice, the algorithm works quickly as long as not too many of the characters have
large number of states. Also, in practice, as long as the monomorphic characters are independent
of each other and comprise a suitably large set, there will be very few perfect phylogenies. Thus,
we expect Step 1 to be very fast, and to produce very few minimal perfect phylogenies.

Discussion of Step 2:. We consider the following problem:

Problem: Re�ning a tree

Input: Leaf-labelled tree T , and set C of polymorphic characters, each with an individual
load bound.

Question: Does a perfect phylogeny T 0 exist for the polymorphic characters, subject to
the constraint that T 0 is a re�nement of T?

Algorithm D:
For each internal v 2 T which has degree greater than 3, do:

1. Let �(v) = �1(v)[�2(v) where �1(v) consists of all the neighbours of v which are leaves
and �2(v) consists of all the non-leaf neighbours of v. For each uj 2 �2(v) add a new
node wj on the edge (v; uj). Compute the labelling of wj so as to make every character
convex (each character must contain every state that appears on both sides of wj).

18

2. If some new node has a load for a character that exceeds the stated bound for that
character, RETURN(No). Let Sv = �1(v)[fwjjwj is a new node and wj is a neighbor of
vg. Use any of the algorithms from Section 3 to determine if there is a perfect phylogeny
for (Sv; C). If any (Sv; C) fails to have a perfect phylogeny then RETURN(No), else
RETURN(yes).

Theorem 4.17. Algorithm D correctly determines whether a perfect phylogeny T 0 exists
re�ning T within the stated load bounds, and can be modi�ed to produce the perfect phylogeny T 0

in time minfO(rL+1Ln2); O(n2L2 + n(rkL2)L+1)g.

Proof. If the algorithm returns NO, it is clear that no perfect phylogeny within the constraints
of the problem exists. If it returns YES, then the perfect phylogenies re�ning each of the stars
can be hooked up via the new nodes. The re�nement can be done by using the algorithms in
Section 4. It can be shown that the algorithm takes minfO(rL+1Ln2); O(n2L2 + n(rkL2)L+1)g.

In Algorithm D, if jSvj is small then it may be cheaper in practice to look at all possible leaf-
labelled topologies on Sv rather than use the algorithms of Section 4 to determine the existence
of perfect phylogenies on Sv .

5. Polymorphism in Linguistics. Properly chosen and encoded characters in Linguistics
have been shown to be convex on the true tree, so that with proper scholarship we should be
able to infer a perfect phylogeny. In recent work on an Indo-European data set, [38] found
that there was extensive presence of polymorphic characters. The degree of polymorphism for
each polymorphic character could be determined from the data with high con�dence, so that the
question of inferring the correct tree amounted to determining if a perfect phylogeny existed in
which each character was permitted a maximum degree of polymorphism (i.e. load) on the tree.
Figure 2 shows the tree that they now posit. This was obtained using Algorithm D, which we
described earlier. This tree is infact di�erent from their earlier hypothesis (which was presented
at the NAS Symposium on the Frontiers of Science in November 1995) and also the tree that
was presented in [6]. This tree has been obtained as a result of using more data. This tree
shows a limited support for Indo-Hittite, moderate support for the Italo-Celtic hypothesis and a
signi�cant support for a subgroup of Greek and Armenian.

6. Polymorphism in Biology. The evolution of biological polymorphic characters can be
modelled using the following operations [28]. A mutation changes one state into another. A loss
drops a state from a polymorphic character from parent to child. A duplication replicates a state
which subsequently mutates. This allows children to have higher load on a polymorphic character
than their parents. We consider two types of costs : 1. State-independent costs, in which any
loss costs cost`, any mutation costs costm, any duplication costs costd, and any match costs 0.
2. State-dependent costs, in which the costs are dependent on the states involved.

Parsimony is a popular criterion for evaluating evolutionary trees from biomolecular data. A
most parsimonious tree T minimizes

P
e2E(T) cost(e). Traditionally, for monomorphic characters,

cost(e) is the Hamming distance of the labels at the two endpoints of e. For unknown topology,
the traditional parsimony problem is NP-hard [9, 10], but for �xed topology it is in P [16].

Consider the case where costs cost`; costm, and costd are not state-dependent. Let (u; v) be
an edge in T with u above v. We de�ne the cost cost(�; (u; v)) of � 2 C on (u; v) as follows: Let
X = �(u)� �(v); Y = �(v)� �(u); and Z = �(u) \ �(v).

� If jX j = jY j then cost(�; (u; v)) = costmjX j (all events are mutations, but shared states
do not change).

� If jX j > jY j then cost(�; (u; v)) = cost`[jX j � jY j] + costmjY j.

19

HITTITE

GREEK ARMENIAN

GERMANIC

LITHUANIAN VEDIC AVESTAN

TOCHARIAN B

OLD CHURCH
SLAVIC

ITALIC CELTIC

ALBANIAN

Fig. 2. The tree on the Indo-European data set. Albanian can be on any of the thick edges. The tree just
indicates a rooted topology without any edge lengths.

� If jX j < jY j then cost(�; (u; v)) = costd[jY j � jX j] + costmjX j.

The cost of the edge (u; v) is then
P

�2C cost(�; (u; v)). For state-dependent costs, we must also
match states in the parents to states in the child for mutation and duplication events.

We consider the following problem: Given a �xed leaf-labelled topology and a maximum
load, l, what is the most parsimonious labelling of the internal nodes?

The problem is NP-complete for arbitrary loss, mutation, and duplication cost functions. If
cost` = 0, such as when we wish to maximize convexity, the problem becomes even harder.

Theorem 6.1. The following problems are NP-complete :

� Given a tree with leaves labeled by species each with load at most l and a value P ,
determine if the internal nodes can be labeled to create a phylogeny with load at most l
and parsimony cost at most P for arbitrary cost` < costm < costd.

� If cost` = 0 and costm � costd are arbitrary then given a tree with leaves labeled by
species and values l and P , determine if the internal nodes can be labeled to create a
phylogeny with load at most l and parsimony cost at most P . This problem remains
NP-complete even if the tree is binary, no edges of weight 0 are allowed, and the input
load is 1 � li � l.

Proof. In the �xed-topology setting, characters are independent. Therefore we consider only
the case of a single character with r states.

Clearly the problem is in NP. We now show it is NP-hard. Our reduction is from the 3-
dimensional matching problem (3DM), known to be NP-complete [20], which is de�ned as follows.

20

We are given three disjoint sets, A;B, and C, each with n elements, and and a set X of m triples,
X = f(ai; bj; ck) : ai 2 A; bj 2 B; and ck 2 Cg. We say that triple (ai; bj; ck) covers ai; bj and ck.
We wish to �nd a set of n triples that covers every element of A;B and C exactly once. This set
of n triples is called a perfect matching.

Given an instance of 3DM, we construct a tree T with leaves labeled by species each with
load at most m � n. The internal nodes of T can be labeled with load m � n and parsimony
(3mn� 3n2)costm if and only if the instance of 3DM has a perfect matching.

We construct the tree T as follows. We begin by creating an internal root node. This root has
3n children a1 : : :an, b1; : : : ; bn and c1; : : : cn which are all internal nodes. Let n(ai), for 1 � i � n
be the number of triples that contain ai. We have have the following states for our character:
m states x1; x2; : : : ; xm corresponding to the m triples xj 2 X , and d(ai) � m � n � n(ai) + 1
dummy states associated with each ai (similarly we have d(bj) � m�n�n(bj)+1 dummy states
for each bj and d(ck) � m � n � n(ck) + 1 dummy states for each ck). Let D(ai) be the set of
dummy states associated with ai (jD(ai)j = d(ai)). Let X(ai) be the set of triples that contain
ai (jX(ai)j = n(ai)). For the remainder of this discussion, we will concentrate on nodes ai. The
nodes bj and ck are treated symmetrically.

Node ai has n(ai) leaf children. Let x1; x2; : : : ; xn(ai) be the states associated with the triples
that contain ai. The ith leaf under node ai has all the dummy states D(ai) associated with ai
and all of x1; x2; : : : ; xn(ai) except for state xi. Each child thus has load m� n.

It can be shown that we can label the internal nodes of this tree with load at most m � n

and cost at most (3mn� 3n2)costm if and only if the instance of 3DM has a perfect matching.

We now prove the second part of Theorem 6.1. Clearly the problem is in NP. We now show it
is NP-hard. We again use a reduction from 3DM as in the proof of the �rst part of theorem 6.1.
We construct the tree as above with the following modi�cations. Each node ai now has 2 children.
For the case of load-1 input, each child is the root of a binary tree. Each of these trees has all
the dummies in D(ai) represented in the leaf set and the states of X(ai) are arbitrarily divided
among the children, appearing as a leaf just once in the subtree rooted at ai. For other input
loads, the labels of the leaves vary. For instance, for load L, there are only two leaf children of
ai, one labeled with all the dummies in D(ai) and all but one state in X(ai), the other labeled
with all the dummy states and the single state xq 2 X(ai) missing in the label of its sibling. For
other loads, the children of ai can also be made into binary trees where the input load is met by
at least one leaf, all dummy states are represented in each child of ai and each state in X(ai)
is represented exactly once. To make the whole tree binary, we form an arbitrary binary tree
with the ai as \leaves" (the two children of ai will be attached). We call this tree (without the
children of ai) the A tree. We make the root of the A tree a child of the global root. Similarly
we form a B tree and a C tree and make them children of the global root.

Again, it can be shown that we can �nd labels for the internal nodes of this tree with load
at most m�n and cost at most (3mn+ 6n� 3n2� 3m)costm if and only if the instance of 3DM
has a perfect matching.

We now consider algorithms for �xed load l. Since the topology is given, characters can be
solved independently. We �rst give the algorithm for the most general possible cost function and
then consider special cases which can be solved more e�ciently. All the algorithms are standard
bottom-up dynamic programming. A �nal pass downward from the root produces an optimal
labeling of the tree in time O(nlk). We can also randomly sample optimal solutions.

Theorem 6.2. Given a tree on n species with k characters where r is the maximum number
of states for any character,

1. There exists an O(nkr2l)-time algorithm to compute the most parsimonious load-l la-

21

belling for the tree for arbitrary state-dependent costs.
2. There exists an O(nkl(2r)l)-time algorithm to compute the most parsimonious load-l

labelling for the tree for arbitrary �xed costs cost` � costm � costd.
3. There exists an O(nk(2r)l)-time algorithm to compute the most parsimonious load-l la-

belling for the given tree when cost` = 0.

Proof. When the cost function is state-dependent, we convert our input to a weighted
monomorphic parsimony problem. We de�ne a new set of O(rl) states, one for each possible
label of a node. Given two labels lp and lc, we can determine the cost of an parent-child edge
with labels lp and lc. We must match states for mutations and duplications. We thus compute
a matrix of edge costs. Because loss and duplication costs are not the same, this matrix is not
symmetric in general. We then use the algorithm of Sanko� and Cedergren [34] for weighted
parsimony which runs in time O(nkj2) for n species, k characters, and j states/character. In our
case, we have rl states, where r was the original number of states in the polymorphic character.
Thus this algorithm has time O(nkr2l).

The bottom-up dynamic programming algorithm for weighted parsimony proceeds as follows.
For an internal node v, let c(v; lv) be cost of the best labelling of the subtree rooted at v provided
that node v is labelled lv. Then we have c(v; lv) =

P
v0child of v(minlv0c(v

0; lv0) +w(lv; lv0)), where
w(lv; lv0) is the cost of the edge with parent label lv and child label lv0 . Thus we consider every
possible label for an internal node and compare it against every possible label for its children.
For arbitrary weight function w, this will cost r2l for each parent-child interaction.

For the case of arbitrary cost` � costm � costd (not state-dependent), we can reduce the
overall time to O(nkl(2r)l). Again, we wish to consider every possible label for node v, but we
need not consider every possible label for its children. Suppose that for each child we know the
best choice of label for each of load 1; 2; : : : ; l, where some speci�c subset (possibly empty) of the
label is speci�ed. For example, we know the best load-3 labeling of the child where a and b are 2
of the 3 states. This is O(lrl) information. To �nd the best labelling of the subtree rooted at v
provided v is labelled by lv, the only labels we need to consider for the children of v are the best
ones for each possible subset of lv and each possible load. For example, if lv = fa; bg, l = 3, and
� can be any state, then the only labels that must be considered for a child is � (best tree with
load-1 label), ��, � � �, a, a�, a � �, b, b�, b � �, ab, and ab�. More formally, let c(v; L; x) be the
cost of the best subtree rooted at v where the label of v contains state set L and x other states.
Then the cost of label lv and node v is:

c(v; lv) =
X

children v0

min
L�lv

min
0�l0�l�jLj

(c(v0; L; l0) + w(lv; L; l
0));

where w(lv; L; l0) =(
l0costm + (jlvj � jLj � l0)cost` if jLj+ l0 � jlvj
(jlvj � L)costm + (jLj+ l0 � jlvj)costd otherwise

Thus to compute the cost of a label, each parent must check O(l2l) labels in each child. Once
the label lv is computed, it contributes to O(2l) minimizations used by its parent (each subset of
lv with load jlvj). Since each of the O(n) edges is checked O(l2l) times for each of the rl possible
parent labels, the overall cost is O(nkl(2r)l).

To prove the �nal part of the theorem, when cost` = 0 (for example when we wish to maximize
convexity), we note that whenever we have cost` = 0, then there exists an optimal solution where
each internal node contains all the states in the subtree rooted at it or has maximum load. We
begin by locating the highest internal nodes v with at most l states in the subtree rooted at

22

them. We label node v by these states and make it a leaf by removing all its children. Now we
can assume all internal nodes have load l. This save a factor of l using the preceding algorithm
since there is now only one value of l0.

7. Discussion. In this paper we introduced an algorithmic study of the problem of inferring
the evolutionary tree in the presence of polymorphic data. We considered parsimony analysis
for polymorphic data on �xed topologies, and presented algorithms as well as hardness results.
We also presented algorithms for inferring perfect phylogenies from such data, and note that it
is reasonable to seek perfect phylogenies for certain types of data. The results of our analysis of
the an expanded Indo-European data set studied by Warnow, Ringe, and Taylor, has led to a
new hypothesis for the evolution of Indo-European languages.

REFERENCES

[1] R. Agarwala and D. Fern�andez-Baca, A Polynomial-time Algorithm for the Perfect Phylogeny Problem
when the Number of Character States is Fixed, SIAM J. on Computing, Vol. 23, No. 6, pp. 1216-1224.

[2] R. Agarwala and D. Fern�andez-Baca, Fast and Simple Algorithms for Perfect Phylogeny and Triangu-
lating Colored Graphs. To appear in the special issue on Algorithmic Aspects of Computational Biology
of International Journal of Foundations of Computer Science. Available as DIMACS technical report
TR94-51.

[3] S. Arnborg, D.Corneil, and A. Proskurowski, Complexity of �nding embeddings in a k-Tree, SIAM J.
of Algebraic and Discrete Methods, Vol. 8, No. 2, April 1987, pp. 277-284.

[4] H. Bodlaender, M. Fellows, and T. Warnow, Two strikes against perfect phylogeny, In Proceedings of
the 19th International Colloquium on Automata, Languages, and Programming, Springer Verlag, Lecture
Notes in Computer Science (1992), pp. 273{283.

[5] H. Bodlaender and T. Kloks, A simple linear time algorithm for triangulating three-colored graphs, In
Proceedings of the 9th Annual Symposium on Theoretical Aspects of Computer Science (1992), pp. 415{
423. To appear, Journal of Algorithms.

[6] M. Bonet, C. Phillips, T. Warnow and Shibu Yooseph, Constructing evolutionary trees in the presence
of polymorphic characters, In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, pages 220-229, Philadelphia, Pennsylvania, 22-24 May 1996.

[7] P. Buneman, A characterization of rigid circuit graphs, Discrete Math 9 (1974), pp. 205-212.
[8] L. Luca Cavalli-Sforza, P. Menozzi and A. Piazza, The History and Geography of Human Genes,

Princeton University Press, 1994.
[9] W. H. E. Day, Computationally di�cult parsimony problems in phylogenetic systematics, Journal of Theo-

retical Biology, 103: 429-438, 1983.
[10] W.H.E. Day, D.S. Johnson, and D. Sankoff, The computational complexity of inferring phylogenies by

parsimony,Mathematical biosciences, 81:33-42, 1986.
[11] W. H. E. Day and D. Sankoff, Computational complexity of inferring phylogenies by compatibility, Syst.

Zool., Vol. 35, No. 2 (1986), pp. 224{229.
[12] A. Dress and M. Steel, Convex tree realizations of partitions, Appl. Math. Letters, Vol. 5, No. 3 (1992),

pp. 3{6.
[13] G.F. Estabrook, Cladistic methodology: a discussion of the theoretical basis for the induction of evolution-

ary history, Annu. Rev. Ecol. Syst., 3 (1972), pp. 427-456.
[14] G. F. Estabrook, C. S. Johnson Jr., and F. R. McMorris, An idealized concept of the true cladistic

character, Mathematical Biosciences, 23 (1975), pp. 263{272.
[15] J. Felsenstein, Alternative methods of phylogenetic inference and their interrelationships, Systematic Zo-

ology, 28: 49-62, 1979.
[16] W. Fitch, Towards de�ning the course of evolution: minimum change for a speci�ed tree topology, Syst.

Zool., 20:406-416 (1971).
[17] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 1980 Academic Press Inc.
[18] D. Gusfield, E�cient algorithms for inferring evolutionary trees, Networks, 21 (1991), pp. 19{28.
[19] R. Idury and A. Schaffer, Triangulating three-colored graphs in linear time and linear space, to appear,

SIAM J. Discrete Mathematics.
[20] R. Karp, Reducibility among combinatorial problems, In R.E. Miller and J. W. Thatcher, editors, Complexity

of Computer Computations, pages 85{103. Plenum Press, NY, 1972.

23

[21] S. Kannan and T. Warnow, Inferring evolutionary history from DNA sequences, SIAM J. on Computing,
Volume 23, No. 3, (1994) pp. 713-737. A preliminary version of this paper appeared in the Proceedings
of the Symposium on the Foundations of Computer Science, St. Louis, Missouri, 1990.

[22] S. Kannan and T. Warnow, Triangulating three-colored graphs, SIAM J. on Disc. Math., 5 (1992), pp. 249{
258; a preliminary version of this appeared in Proc. 2nd Annual ACM/SIAM Symposium on Discrete
Algorithms.

[23] S. Kannan and T. Warnow, A fast algorithm for �nding and enumerating perfect phylogenies, Proc. 6th
Annual ACM/SIAM Symposium on Discrete Algorithms, 1995, San Francisco.

[24] W. J. Le Quesne, A method of selection of characters in numerical taxonomy, Syst. Zool., 18 (1969),
pp. 201{205.

[25] W. J. Le Quesne, Further studies based on the uniquely derived character concept, Syst. Zool., 21 (1972),
pp. 281{288.

[26] M. F. Mickevich and C. Mitter, Treating Polymorphic Characters in Systematics : A Phylogenetic
Treatment of Electrophoretic Data, pages 45-58 in Advances in cladistics, Volume I (1981), V.A. Funk
and D.R. Brooks eds., New York Botanical Garden, New York.

[27] F. R. McMorris, T. Warnow, and T. Wimer, Triangulating vertex colored graphs, SIAM J. on Discrete
Mathematics, Vol. 7. No. 2, (1994), pp. 296-306.

[28] M. Nei, Molecular Evolutionary Genetics, Columbia University Press, New York. 1987.
[29] A. Proskurowski, Separating subgraphs in k-trees: cables and caterpillars, Discrete Math., 49 (1984), pp.

275-285.
[30] D. Ringe, personal communication, 1995.
[31] D.J. Rose, On simple characterization of k-trees, Discrete Math., 7 (1974), pp. 317-322.
[32] D.J. Rose, R.E. Tarjan, and G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J.

Comput., Vol. 5, No. 2, June 1976.
[33] A.K. Roychoudhury and M. Nei, Human Polymorphic Genes: World Distribution, 1988, Oxford Univer-

sity Press.
[34] D. Sankoff and R.J. Cedergren, 1983. Simultaneous comparison of three or more sequences related by a

tree, pp. 253-263 in "Time Warps, String Edits, and Macromolecules: the theory and practice of sequence
comparison" edited by D. Sanko� and J.B. Kruskal, Addison-Wesley, Reading MA.

[35] D. Sankoff and P. Rousseau, 1975, Locating the vertices of a Steiner tree in arbitrary space,Mathematical
Programming, 9:240-246.

[36] M. A. Steel, The complexity of reconstructing trees from qualitative characters and subtrees, Journal of
Classi�cation, 9 (1992), pp. 91{116.

[37] T. Warnow, Constructing phylogenetic trees e�ciently using compatibility criteria, New Zealand Journal of
Botany, 1993, Vol. 31: 239-248.

[38] T. Warnow, D. Ringe and A. Taylor, A character based method for reconstructing evolutionary history
for natural languages, Tech Report, Institute for Research in Cognitive Science, 1995, and Proceedings
1996 ACM/SIAM Symposium on Discrete Algorithms.

[39] J. J. Weins, Polymorphic Characters in Phylogenetic Systematics, Systematic Biology 44(4):482-500, 1995.

24

