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Abstract
There are various “quantitative” methods employed in historical linguistics. These attempt to cre-
ate family trees, judge time depths of separation, etc. The particular means of these attempts have
given rise to various terms such as glottochronology, or lexicostatistics. In the first type, e.g. sta-
tistical attempts are those due to Nichols[1991], or Embleton[1986], or correlation-regression
analysis as done by Labov, and this paper has nothing to say about any of these. The second cate-
gory of works attempt to determine “how many” putative cognages (PCs) we can obtain due to
chance alone using probability theory. Among these are the types that attempt to use the binomial
density as in Ringe[1992], and those that calculate the probability of CVC syllables and the like to
seem to be cognates due to chance [Bender,1969], [Cowan,1962], [Swadesh,1954], Greenberg
[1960]. A thorough review of some of these with corrections, and a discussion of historical lin-
guistics family tree construction can be found in Embleton[1986]. In some unpublished works
presented on web pages, we find calculations (based on the binomial density) that up to 400 false
cognates may be obtained due to chance. More sophisticated methods than these are necessary.
The third type are those that attempt to argue that if the distribution of cognates resembles that of
the binomial density then it must be due to chance [Ringe,1995]. A fourth way to attempt to
obtain “ball-park” figures on the number of putative cognates (PCs) due to chance is in
Hubey[1994]. This paper introduces a method that can be used as a kind of distance similar to the
chi-square tests due to Kessler (2001), but does not require assumptions that the comparanda are
independent.

Introduction

Science starts with analysis and there are many methods of analyzing data.  

The field of Statistics is constantly challenged by the problems that science and industry brings
to its door....With the advent of computers and the information age, statistical problems have
exploded both in size and complexity....Vast amounts of data are being generated in many
fields, and the statistician’s job is to make sense of it all: to extract important patterns and
trends, and understand “what the data says”. We call this learning from data.  The challenges in
learning from data have led to a revolution in the statistical sciences. Since computation plays
such a key role, it is not surprising that much of this new development has been done by
researchers in other fields such as computer science and engineering [Hastie2001]

It seems that as the rest of the data-analysis community has broken itself free of rigid (and simple)
statistical methodology, historical linguistics has barely begun the task of using such methods.

This methodology measures the probabilistic significance of sound correspondences between
short word lists. Many rules of thumb invoked by linguists in order to obviate chance resem-
blances, such as multilateral comparison and emphasizing grammar over vocabulary, are show to
actually decrease the power of quantitative tests. While the procedures presented here are straight-
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forward, the author also details the extensive linguistic work needed to produce word lists that
will not yield nonsensical results [Kessler2001].

The Test of Goodness of Fit

Goodness-of-fit tests determine how well a given function (probability density function, pdf, in

this case) fits another function. The  tests for the “extent to which it is unreasonable to assume
that the population has a given distribution [pdf]” or extent to which “a set of data cannot be rea-
sonably assumed to be a random sample from a population having a given distribution [pdf]”. The
test can also be used to test for independence of the random variables. For two variables, the data
can be expressed as 2D array (table) [Strait:491]. See also Embleton [1986].

The table (contingency table) above is for categorical variables. Then the entry  represents the

number of items belonging to  and . From these we can calculate the marginal frequencies 

1)                   ;     and    

and put the values besides the table as shown. We then compute 

2)                            where   

It can be shown that if A and B are independent random variables and if each value of  is suffi-

ciently large, then  is a value of a random variable whose distribution is approximately  with

Table 1: 

B1 B2 ... Bn

A1 f11 f11 f11 f1,x

A2 f11 f11 f11 f2,x

... ...

... ... fij

Am f11 f11 f11 fm,x

fx,1 fx,1 fx,1 f

�2
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(m-1)(n-1) DOF (degrees of freedom). and reject the null hypothesis that the random variables are

independent if .

Datamining, Knowledge Discovery and Data Analysis

Datamining is based on what was called pattern recognition. One way of classifying the compo-
nents of pattern recognition is via (i) classification and (ii) estimation. Typically classification is
used to create a set of discrete, finite classes, whereas estimation is taken to be an approximation
of some desired numerical value based on an observation. The boundaries are not very crisp since
estimation consisting of a large number of integer values may just as easily be thought of as cate-
gorization or classification. This is especially true if the measured quantities (input data) does not
consist of interval or ratio-scaled values [Hubey1999]. Typically a broad-brush classification of
the procedures that consist at least of parts of datamining can be strung along a continuum as
shown in Fig (1).

It may be said that the goal of datamining is to produce domain-knowledge for fields in which
there are no models of the type one finds in the ultimate example of a science; physics and its
derivatives. Hence the KD (Knowledge Discovery) in KDD (Knowledge Discovery and Datamin-
ing). But it is also a “replacement” and improvement of the classical statistical techniques. An
informal listing of the classes of data mining procedures would include, Classification/Segmenta-
tion/Clustering, Forecasting/Prediction, Association Rule Extraction (knowledge discovery),
Sequence Detection. Data Mining Methods may also be classified according to various criteria as:
Decision Trees, Rule Induction, Neural Networks, Nearest Neighbor, Genetic Algorithms,
Regression Models, Bayesianism, etc. At present datamining sits at the intersection of three broad
and converging trends as shown in Fig (2).

�2 �2
� m 1–� � n 1–� ���

Fixed

More Knowledge More Data

Parametric Nonparametric
with Preprocessing

Nonparametric

Figure 1:  The Modeling Method Continuum:: Fixed models use existing knowledge on a problem (such as in 
engineering). The nonparametric method relies on a large data set but does not use existing knowledge. The less-
well-known aspect of a problem is captured by the nonparametric model.
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Figure 2: Datamining Algorithm Development 
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The Problem Space consists of:
Input dimensionality:: the number of components of the input vector
Input space:: the set of allowed input vectors (typically infinite)

Mapping:: the model; the function that transforms/maps the inputs to the output, e.g. 

where  and 

Parameter vector::a more accurate model is  where  is the parameter vector

Learning algorithm:: generally supervised or nonsupervised learning, which fine-tune the param-
eters which are a part of the model.

Typically the basis of all datamining is some kind of a clustering technique which may serve as a
preprocessing, and data reduction technique which may be followed by other algorithms for rule
extraction, so that the data can be interpreted for and comprehended by humans. Prediction and
classification may be a goal of the process also. There are a set of related problems in the fields of
datamining, knowledge discovery, and pattern recognition. We don’t know how many neurons
should be in the hidden layer or the output layer. Thus if we attempt to use ANNs for clustering as
a preliminary method to finding patterns we must use heuristic methods to determine how many
clusters the ANN should recognize (i.e. what is the rank/dimension of the output vector). This is
just another view of the problem in datamining of knowing how many patterns there are in the
data and how we would go about discerning these patterns. There is a related problem in k-near-
est-neighbors clustering in which we need an appropriate data structure to be able to efficiently
find the neighbors of a given input vector. Indeed, before the k-neighbors method can be used to
classify an input vector we need to be able to cluster the training input vectors and an ANN might
have been used for this process. The problem of knowing how many patterns (categories or
classes/clusters) there are is an overriding concern in datamining, and in unsupervised artificial
neural network training. 

Clustering

Clustering is the process of grouping data into classes or clusters so that objects within a cluster
have high similarity in comparison with one another, but are very dissimilar to objects in other
clusters. Dissimilarities are assessed based on the attribute values describing the objects. Often
distance measures are used. Clustering is an unsupervised activity, or should be. Clustering can be
thought of as the preprocessing stage for much of datamining. An automated clustering algorithm
may be said to be the goal of datamining since classification and prediction algorithms can work
on the clusters. Similarly association rules may be derived from the clusters. Clustering can be
used by marketers to discover distinct groups of buyers in their customer bases. It can be used to
derive taxonomies in biology or linguistics. It can help categorize genes with similar functional-
ity, classify WWW documents for information discovery. In other words, it is a tool to gain
insight into the distribution of data. It has been a branch of statistics for years. In machine learning
it is an example of unsupervised learning. In datamining active themes for research focus on scal-
ability of clustering methods, the effectiveness of methods for clustering of complex shapes, and
types of data, high-dimensional clustering techniques, and methods for clustering mixed numeri-
cal and categorical data in large databases. It can be seen that clustering is the basis of datamining,
data analysis, and hierarchical-tree building (e.g. language family tree building). Since clustering
is based on a concept of distance/dissimilarity, it is not surprising that there are so many different

y f x� �=

x x1 x2 � xn� � �� 	T
= y y1 y2 � ym� � �� 	T

=

y f x 
� �= 
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means of measuring “dissimilarity”. The Kullback-Leibler distance is a special and principled
case which is reasonably well-suited for interlanguage-distance measurements based on Swadesh-
like lists.  It is shown below that the goodness-of-fit tests are also based on distances, e.g. dis-
tances between probability density functions (pdfs) or probabilty mass functions (pmfs).

Measures of Association, Distance, [Dis]Similarity

There are many different mathematical formulas for measuring distance or similarity. Among
these are probabilistic formulas, which may also be considered to be goodness-of-fit measures
from the point of view of statistics.  Some of these are given below in Table 2. Others can be
found in various books [e.g. Hastie2001].

Relative Entropy D(p||q) is the distance between two probability densities or mass functions. It is
also called the Kullback Leibler distance and is defined as [Cover & Thomas1991]

3)                             

where, the convention (based on continuity arguments)    and  has been

used.  For a two dimensional density this is given by

4)                          

It has been used in the form

5)                                       

Table 2: 

Kullback Leibler 
Divergence

Jensen-Shannon
Divergence

Skew Divergence

DKL q r�� �
q y� � q y� �

r y� �
----------� �

 �log�=

DJS q r�� � 1
2
--- D q avg q r�� ��� � D r avg q r�� ��� �+� 	=

D� q r�� � D r �q 1 �–� �r+�� �=

D p q� � pi

pi

qi
----log� p x� � p x� �

q x� �
----------log xd�= =

0
0
q
---log 0= p

p
0
---log �=

D p q� � pij

pij

qij
-----log�� p x y�� � p x y�� �

q x y�� �
----------------log xd yd��= =

D P Q� � pij

pij

qij
-----log��=
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where P and Q are Markov transition probabilities in the search for gene clusters [Hayes &
Borodovsky1998], in composer identification [Jacobliu], scene analysis [Feixas et al] and in a
new pairwise clustering [Dubnov et al]. One dimensional versions have seen even more use
including speech recognition [Jelinek1997]. The mutual information I(X;Y) is a special case of
the relative entropy or the Kullback Leibler distance/divergence for 2D joint pdf and its product
distribution e.g.

6)                                    

Clearly, it is asymmetric. It also does not obey the triangular inequality. However, it can be seen
that it is a measure of independence of two pdfs and is thus a good alternative to the chi-square
tests since the data are not required to be independent. There are methods to fix up the problem of
asymmetry of the Kullback Leibler distance or divergence. One simple method is simply to com-
pute the arithmetic or geometric means [Johnson et al]. Other more sophisticated methods are
available such as the Ali-Silvey class of information-theoretic distance measures [Johnson et al],
or the Jensen-Shannon divergence [Dubnov et al].  These are all related to the Aikake Information
Criterion (AIC) [Aikake1973] which figures prominently in study of complexity and statistics
[Risanen1989] and data analysis [Hastie2001]. There are other such information criteria. The KL
distances are also not normalized. We do not know how large distances can be. Furthermore, for
interlanguage comparison we must use mutual information in the form,

7)                                     

where  is the transition-correspondence matrix, and  and  are the distributions of the pho-

nemes of languages  and , hence the use of   (similarity) instead of distance.

However since the distance being measured is from the pmf that would occur by chance, for the
case that the languages are not related at all the distance measure obtains a zero which means that
equation really is a measure of similarity. However, if the two languages are the same language
then it does not yield 1 therefore is difficult to normalize the way it is. In the case that 

then the correspondences are identical to that which would have occurred by chance, and the dis-
tance should be maximum. Therefore the distance should be something like

8)                                    

so that the closer  is to , the greater distance between the languages and

 if the double sum is zero.  Unfortunately there are other problems. If any

of the  then since  we obtain nonsensical answers unless we use

. One quick fix of this problem is to use smoothed pmf for the data so that

I X Y;� � p�� x y�� � p x y�� �
p x� �p y� �
----------------------log=

S Lp Lq� � pij

pij

piqj

---------log��=

pij pi qj

Lp Lq S Lp Lq� �

pij piqj=

D Lp Lq� � e
pij

pij

piqj

---------log��–

=

pij piqj

max D Lp Lq� �� � 1=

pij 0= 0� �log �–=

0
0
q
---log 0=
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. However there are still more problems. What we must do is change the mutual

information so that it measures similarity to a diagonal matrix at one extreme and similarity to
the hypothetical/random joint pmf,  at the other extreme. Therefore what we should use is

something like

9)                      

One may also interchange  and  or average the two distances as alternative metrics (vide

supra).  One can see that  are never zero if we do not include phonemes that do not show up in

the sample. Therefore, if  then since  these terms do not contribute to the

sum, and thus to the distance. We can now compute the extrema of this function so that we can
normalize it.

Case I: The languages are not related and therefore 

10a)         

If the  is used (e.g. base 2 logarithm) then it takes a particularly simple form

10b)              

Of course, in practice,  we will not obtain the exact equality  but only approximate

equivalence. If the errors are more or less symmetrically distributed, e.g. if  is symmetri-

cally distributed about zero, and if none of the  are zero, then  should be the largest num-

ber one can obtain for the two languages in question, and thus should be used in the
normalization. 

Case II:   , therefore    where  is the Kronecker delta. Therefore

 yielding, after splitting the summation into diagonal and nondiagonal

terms

11)            

i j � pij 0�� ���

piqj

D Lp Lq� � e
pij

piqj pij+

piqj

---------------------log��–

e
pij 1

pij

piqj

---------+log��–

= =

pij piqj

piqj

pij 0= 1� �log 0=

pij piqj=

D Lp Lq� � e
pij 1

pij

piqj

---------+log��–

e
pij 2� 	log��–

e
2� �ln– 1

2
--- �max= = = = =

log2� �

�max D Lp Lq� � e
pij 2� 	log��–

e
pij��–

e
1–

= = = =

pij piqj=

pij pi– qj

pij �max

Lp Lq= pij �ijpi= �ij

�ijpi

pipi
----------

�iipi

pipi
----------

pi

pipi

--------- 1
pi
----= = =

D Lp Lq� � e

pii 1
pii

pipi

---------+ pij

j i�

� 1
pij

pipj

---------+log

i

�+log

i

�� �
� �
� �

–

e

pi

i

� 1
1
pi

----+log–

�min= = =
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Every language when tested against itself will have all nondiagonal entries zero, so that the sec-
ond sum vanishes yielding the final result. The first sum simplifies to a one-dimensional form as
shown. The exponent can be simplified  

12)                          

Therefore the final result is

13)                                

if we use natural logarithms. The form of the result is suggestive in that probability ratios are
weighted by their probability of occurrence by being raised to the exponent. In order to achieve
the results in Eqs (11) and (13), the actual phoneme distributions for the languages must come
directly from the sample e.g. Swadesh-like lists. If the distribution is taken from the language as a
whole, then the sample distribution (e.g. pmf) that comes from the Swadesh-like list will not be
identical to it, and the distance metric will have slight errors due to operation of the law of large
numbers. Finally, therefore, the normalized distance metric must be of the form

14)                                 

and hence

15)                  

However the results of the computation for some simple cases (Appendix IV) shows that Eq (15)
fails to capture some important aspects of the problem. The metric is not a monotonically increas-
ing measure that hits a maximum at the random case, as it should be. There are other factors must
be considered to modify the distance measure. In simple terms, it fails to measure the diagonality
of the case when the distance is being measured between identical languages and in which it
should yield zero, and it obtains larger numbers than for the random case. The problem is that
there are a different number of terms in the sums and these affect the final results. We should find
some way to modify these sums depending on the shape of the . Define k as the number of

nonzero cells in , n as the number of phonemes being considered (and hence basically a mea-

pi

i
� 1

1
pi
----+log 1

1
pi
----+

pi

log
i
�

1 pi+

pi
-------------

pi

i
�� �

� �
 �

log= =

�min e

1 pi+
pi

-------------
pi

i

�� �
� �
 �

log–
1 pi+

pi
-------------

pi

i
�= =

xn

x xmin–

xmax xmin–
---------------------------=

Dn Lp Lq� � e
pij 1

pij

piqj

---------+log��–

e

pi 1
1
pi

----+log

i

�–

–

e
pij 2� 	log��–

e

pi 1
1
pi

----+log

i

�–

–

------------------------------------------------------------------------------------------=

pij

pij



Page 9 of 34 Hubey June 9, 2003
sure of the size/rank of the matrix), , the sum in the exponential term and  as the trace of the

matrix . Then we can see that we have two separate measures of the “degree of diagonality” of

the matrix ;  and , or  and . Now, the simplest measure of  the “degree of

diagonality” of  is k, however either  or  is better since different size  will be used

in different measurements by different researchers. Of the two  is probably better because it is

a ratio of the degree of nondiagonality, and it is always positive whereas  may need a sign

correction. Similarly, the trace, e.g.  is a measure of how much of

the data is along the diagonal. It would be easier if we could find a measure of the degree of
“Toeplitzity” of , however lacking such a measure, and realizing that we can always change a

Toeplitz matrix into a diagonal one by exchanging columns, we can just as easily operate with a
“degree of diagonality” but which is normalized, e.g. . If the matrix is diagonal this ratio will

be unity. If the ratio is greater than one, it means that the  is spread out like a random matrix,

and if there is still a tendency toward peakedness about the diagonal, the ratio  will catch it.

Therefore we need a function  or in more general terms  that can capture
the “diagonality” effects and which can be used to modify the basic entropic distance measure.
For now, we will only use a simple co-factor function

15)                                                     

Thus greater the value of f, the greater the tendency of  to be spread out away from diagonality,

and hence distance zero. The calculations in the Appendix use , however there is a
principled way in which the values of these constants can be decided. Hence we have the final
form of the distance metric

16)                

                       
There are other caveats, modifications, and simplifications one must consider. Taking a hint from
the Ali-Silvey class of measures we can even drop the weighting by the pmf or use some other
function instead of the pmf. And because we often wind up with quantities of the sort log(2), we
might use logarithms to base 2 which might help with the computations. In any case, if base 2 is
used then information is measured in bits, and in nats if the natural logarithm is used. In this case
the quantities are normalized so it does not seem to matter which logarithm is used. Furthermore
since the sum is sensitive to the number of terms, the same number of terms should be used in all
such tests or the sums in the exponents should be normalized for the effects of the number of

�  
pij

pij �  ! k n! �  – k n–

pij k n! k n– pij

k n!
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�ijpij p11 p22 � pnn+ + +=
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terms. The coefficients  of the cofactor function f() should be calculated, if possible,
on a set of languages (real or artificial) such that  the triangle inequality of the distance metric is
preserved.

Quick experimentation shows that simply using the normalized sum (e.g. divided by the trace) is
just as good if not better, therefore 

17)                        

is probably as good a distance measure as Eq (16). Other simpler alternatives may also be found
based on the ratios used as exponents in Eq (17).

Language Family Analysis

Language is an extremely complex object of analysis. Even a simple distance metric such as those
developed here requires a series of operations in which the researchers have choices. The stages
and choices are shown below in Fig (3).

Conclusions

It is clear that the concept of distance is paramount in data analysis, clustering, and datamining.
Distance allows the use of powerful mathematical techniques. The distance measures and metrics
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Clustering Language
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Figure 3: Discovering Language Relationships. The steps that are required to be able to create lan-
guage relationships such as language family trees, or minimal spanning trees.

Algorithms

Techniques



Page 11 of 34 Hubey June 9, 2003
given above can be used with Swadesh-like lists to derive normalized distances between lan-
guages. These distances then can be used with a variety of clustering algorithms to produce a vari-
ety relationships amongst languages. More experimentation is needed to more fully understand
the properties of the various distances. Only the simplest start has been given here. The distance
given here does not require heroic assumptions such as the independence of the comparanda, and
is based on information theory. The values of the coefficients can be determined via
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Appendix 0: Phoneme Alignment

The phonemes of words in Swadesh-like lists have to be aligned before the correspondence-
matrix can be used.  Genetics algorithms such as the Needleman-Wunsch[1970], and Smith-
Waterman[1981] algorithms can be used. The distance between phonemes can then be computed
using various distances e.g. Levenstein “edit distance” [see for example Nerbonne , Heeringa  ].
These use dynamic programming techniques to calculate the alignment score S(i,j) e.g. you only
need to enumerate and score all ways in which one aligned pair can be added to a shorter align-
ment to produce an alignment of the first i residues of sequence-1 and the first j residues of
sequence-2. All possible pairs are represented by a two-dimensional array, and all possible com-
parisons are represented by pathways through this array. The three main steps are:

1. Assign similarity scores:  A numerical value (score) is assigned to every cell in the array
depending on similarity/dissimilarity.  Similarity scores may be simple, or related to chemical
similarities or frequency of observed substitutions

2. Score pathways through array:  For each cell we calculate the maximum possible score for an
alignment ending at that point. The cumulative score is calculated by adding in a path through the
matrix.  Subrows and subcolumns are searched for the highest score. The gap is penalty indepen-
dent of the length of the gap. The best match is the pathway with the highest score. The maximum
match is largest number of amino acids of one protein that can be matched with those of another
protein while allowing for all possible deletions

3. Construct the alignment

There is an online version of the Needleman-Wunsch algorithm however it seems to only work
with alphanumeric characters:
           http://bibiserv.techfak.uni-bielefeld.de/cgi-bin/adp_NeedlemanWunsch

The Smith-Waterman algorithm (1981) is based on the NW algorithm but instead of looking at
each sequence in its entirety, this compares segments of all possible lengths and chooses which-
ever optimise the similarity measure (local alignments). Whereas the NW algorithm finds the best
global alignment, the SW algorithm it works by comparing  segments of all possible lengths
(LOCAL alignments) and chooses whichever maximise the similarity measure.

The similarity scoring might have +1 for a match and 0 or -1 for a mismatch. Gap penalties are
also introduced. Using very high gap penalties, the words in the Swadesh-like lists can be concat-
enated into one big sequence, and the long sequences can be compared using both the NW and
SW algorithms. More detail on these algorithms especially as applied to linguistics can be found
in Kondrak, Nerbonne, Heerenga.
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Appendix I    Markov Chains and Entropy of English

Let  be a sequence of random variables taking on values in some finite alphabet. 

If nothing more is known about this process, then the Bayes’ relationship holds

I.1)                                   

However, if
I.2)                                    

                                              
then the variables are said to form a Markov chain, which is to say that the process that produced 
this sequence or time series was a Markov or Markovian process. The relationship can be iterated 
to give                              

I.3)                                           

Markovian processes have the simplest memory. For the purposes of using the concept of RSC 
(recurrent sound change) in Swadesh-like lists we would have to use phonemes instead of the 
English alphabet as done in Cover &  Thomas.  The frequency of phonemes in every language has 
to have a distribution. The frequency of phoneme-pairs also has a joint distribution, and a condi-
tional distribution (which is necessary for a Markov model). Ditto for higher order conditional 
densities. To build a third-order Markov model (using letters, not phonemes) we must estimate the 

values of .  This table will have  entries, where N is the number of 

phonemes and to make a reasonably accurate estimate of these probabilities we would need to 
process many millions of words written in a phonemic alphabet. There are examples of Markov 
approximations to English (using letters) from Shannon’s original paper [Cover & Thomas]

1. Zeroth-order approximation: independent and equiprobable symbols
  XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
2. First-order approximation: independent symbols with frequency matching English letters
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
3. Second-order approximation: the frequency of pairs of letters matches English text
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
4.Third-order approximation: the frequency of triplets matches English text
IN NO IST LAT WHEY CRATICT FROURE BERS GROCID
5. Fourth-order approximation: frequency of quadruplets matches English text
THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE,
ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE
MERG.

x1 x2 � xn� � �$ %

p x1 x2 � xn� � �� � p xi x1 x2 � xi 1–� � �� �

i 1=

n

�=

p xi x1 x2 � xi 1–� � �� � p xi xi 1–� �=

p x1 x2 � xn� � �� � p xi xi 1–� �

i 1=

n

�=

p xi xi 1– xi 2– xi 3–� � N 1+� �4



Page 17 of 34 Hubey June 9, 2003
Now, when we construct a transition matrix to match up CVC syllables of language A to language
B, we not only have to list the phonemes in the first place but also in the second, and third. Finally
we also have to list the pairs and triplets, and quadruplets to be able to account for the conditioned
sound changes that may have occurred.

Correspondence-Transition Matrix for Distance Metric Calculations

.............
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Appendix II  Tensor, pmf, and Notation

Arrays and scalars are very useful in linguistics.  Two-dimensional arrays are treated as arrays of
arrays and so on. Arrays in other settings are called vectors. Two dimensional arrays, similarly,
are called matrices. There are many different types of notations for mathematics in which vectors,
scalars and matrices are used. Similarly, typically an uppercase Latin letter may be used for matri-
ces, and Greek letters for scalars in linear algebra courses. Various other notations are used in the
literature for vector. It may be represented as a bold lowercase Latin letter, such as x, or it may be

represented as a letter with a little arrow on top , or an underscribble . 

There are several problems with the bold notation for vectors. It is difficult in handwriting to use
bold letters.  The arrow or underscribble notation is reasonably good for handwriting however it
causes confusion when functions, matrices, scalars are used together. For example a scalar func-
tion of a vector would be written as f(x) whereas a vector function of a vector would be g(x).
There is a very simple and fruitful way to combine all of these together. These structures are all
tensors. A scalar is a tensor of rank zero. A vector is a tensor of rank one. A matrix is a [mixed]
tensor of rank two. A tensor of rank n is represented simply as a indexed [sub/superscripted] vari-
able with n indices. A scalar, therefore, has no indexing. A vector x  is represented simply as .

There is a subtle difference of the meaning of the notation different settings. The notation  is

used for both the whole vector or a particular component of it i.e. the kth component of the tensor
(vector) . Which is meant is usually clear from the context. It should be noted that the index in

this particular usage is a free index and therefore it is a dummy index (i.e. it can be anything).
However when tensor products are being formed careful attention must be paid to the selection of
indices since they are significant in some cases.

Normally, to show inner (dot), outer, vector, and cross products, and also to conserve space one
must resort to writing vectors by using transposes. Similarly, to show the dot product using indi-
ces one uses the summation sign whereas in reality it is simply redundant. The suppressed sum-
mation notation or convention of tensors is traced back to Einstein [Butkov,1968:679].  In linear
algebra books where vectors are basically considered to be special classes of  matrices (   or

 matrices), and where matrix products do not commute and where transposes of matrices are
commonplace it becomes important to distinguish between row vectors and column vectors. In
many physics and engineering texts where is usually no need to discriminate between column
vectors and row vectors, the notation above is sufficient. A tensor is invariant to rotation of the
underlying Cartesian space. However, here we only basically use the notation for simplification of
the concepts. An inner (or dot) product of two vectors is written as

II.1)                               q= x y=

Here whether the vectors are column vectors or row vectors is immaterial. However in many
books, especially those in linear algebra, the distinction must be made. The dot (inner) product

would then be written as p=xTy or in longer form as

x x x

xk

xk

xk

1 n&
n 1&

' xiyi

i 1=

n

� x1y1 x2y2 � xnyn+ + +=
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II.2)              xTy=    

In the suppressed summation notation, the convention requires summation over a repeated index
which is used in ways similar to the dummy integration variable. The tensor notation can be used
for stylistic purposes even if the quantities do not transform like covariant or contravariant ten-
sors. Some of the quantities here may not transform like tensors, so only the suppressed summa-
tion convention of tensors and the subscript notation is used for stylistic purposes. In tensor
notation (using the suppressed summation convention)  the dot product of the two tensors of rank

one xi, and yj is simply  or    or even .  Thus  a vector product such as yxT  is

II.3)                        yxT= 

in tensor notation is simply , or equivalently , (or even ) clearly a two dimensional

tensor in both cases. Here it is required that the two vectors have different subscripts because
there is something like a scoping rule that necessitates the use of matching of subscripts when ten-
sors are used in equations.  The order of the tensors in the product is immaterial since both prod-
ucts expand to 

II.4)                                      or 

respectively. The order of the factors in scalar multiplication is obviously not significant.  The
easiest way to relate vector product (outer product) of vectors is to think of column  and row vec-
tors as being parts of matrices as in

II.5)      

x1 x2 � xn

y1

y2

�
yn

xiyi

i 1=

n

� x1y1 x2y2 � xnyn+ + += =

xjyj xiyi xkyk

y1

y2

�
yn

x1 x2 � xn
(

y1x1 y1x2 � y1xn

y2x1 y2x2 � y2xn

� � � �
ynx1 ynx1 � ynxn

=

xjyk ykxj ymxk

x1y1 x1y2 � x1yn

x2y1 x2y2 � x2yn

� � � �
xny1 xny2 � xnyn

y1x1 y1x2 � y1xn

y2x1 y2x2 � y2xn

� � � �
ynx1 ynx1 � ynxn

x1

x2

�
xn

y1 y2 � ym� � �

x1 0 � 0

x2 0 � 0

� � � �
xn 0 � 0

y1 y2 � ym

0 0 � 0

� � � 0

0 0 � 0

x1y1 x1y2 � x1ym

x2y1 x2y2 � x2ym

� � xjyi �

xny1 xny2 � xnym

= =
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The representation of a product of a matrix by a vector (i.e. Ax) is vj=ajkxk  showing that there is
a summation over the repeated index (the suppressed summation convention). The result is a ten-
sor of rank 1 (vector) with the free index j. An expansion of this product for a specific index is

II.6)                                     

We can expand this for every j (the index of the vector) so the result is clearly a vector.   We can
combine summation implied over a repeated index, with the Kronecker delta defined as

II.7)                                           

Therefore the condition of orthonormality of two vectors  is simply . Thus the trace

of a matrix  is simply .  The trace can simply be written as the contraction  or  or

any dummy index. We can use the Kronecker delta to sum over an index, such as 

II.8)             

Therefore the Kronecker delta can be used to even allow inline formatting of summation. Now, it
is just as easy to treat pmf’s as tensors or arrays, so that  is simply a tensor of rank 2 e.g.

II.9)                           

vj ajkxk
k 1=

n

� aj1x1 aj2y2 � ajnyn+ + += =

�ij
1 i j=

0 i j��
�
�

=

ui uj( �ij=

bij �ijbij bii bjj

�11x1 �22x2 � �nnxn+ + + x1 x2 � xn+ + + xj
j 1=

n

� �ijxi= = =

piqj

piqj

p1

p2

�
pn

q1 q2 � qm� � �

p1q1 p1q2 � p1qm

p2q1 p2q2 � p2qm

� � pjyi �

pnq1 pnq2 � pnqm

= =
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Appendix III: Linear Time Series, Cross-Correlation and the Oswalt Shift Test

It just so happens that the definition of auto/cross-correlation in continuous math is defined as

III.1a)                                                       

With the substitution s=z+t (and ds=dz) this becomes 

III.1b)                                                        

So the higher order correlations of some function x(t) are then computed as

III.2)                                                          

In general signals are first discretized/digitized before processing so that we need to consider sys-
tems that are discrete. The most general linear system produces an output y that is a linear func-
tion of external inputs to x and its previous outputs

III.3)                                     

Typically  term is nonzero which imposes an initial conditions (IC) on the system. The two

parts of the rhs are called by different names in different fields. In statistics, the first summation is
called an autoregressive (AR)  whereas in engineering, signal processing, it is called an infinite
impulse response (IIR) meaning that the output can continue after the input stops.   The second
term is called a moving average (MA) in statistics and finite impulse response (FIR) in engineer-
ing. Together, the system is an  autoregressive moving average system of order (M,N) (i.e
ARMA(M,N)).   The autocorrelation function is defined to be 

III.4)       

 where  is the mean, and  is the variance.  The last line derives from the fact that for station-

ary processes the time averages are independent of the time origin. In some books a distinction is
made between autocorrelation function and autocovariance function. The autocovariance func-
tion is the centralized or normalized version of the simple autocorrelation function.

The values of the autocorrelation function is . For specific cases the value of  can be

computed in simpler ways. For example, for zero-mean MA processes (a=b=0), the autocorrela-
tion function is

Rxy  � � x s  –� �y s� � sd�=

Rxy  � � x z� �y z  +� � zd�=

x t� �x t s–� �x t u–� � sd ud��

yt at bmyt m–

m 1=

M

� cnxt n–

n 0=

N

�+ +=

at

) 
yt *y–� � yt  – *y–� �+ ,

yt *y–� � yt *y–� �+ ,
------------------------------------------------------

ytyt  –+ , *y yt  –+ ,– *y yt+ , *y*y+–

ytyt+ , *y yt+ , *y yt+ , *y*y+––
----------------------------------------------------------------------------------------

ytyt  –+ , *y
2

–

ytyt+ , *y
2

–
--------------------------------= =

*y �y
2

1– ) 1. . ) 
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III.5)                                       

For the AR model, we can multiply both sides by  and average to obtain

III.6)                                     

which after normalizing by the variance gives

III.7)                                           

This linear set of equations is called the Yule-Walker equations. It need not be zero after M steps,
unlike the MA case. The equations can be inverted to related the AR coefficients to the autocorre-
lation function. An efficient method to accomplish this is to use the Levinson-Durbin recursion.
There is no unique method to find the best ARMA model to describe a data set (unlike the simpler
AR and MA models). A popular procedure is the Box-Jenkins recursive solution. There is some
leeway in trading off M vs N in selecting the order of the ARMA model.

One can now combine the cross-correlation function idea, and the alignment algorithm ideas from
genetics to show what the Oswalt test attempts to do in some way.

...............................

) 

cnxt n–�� � cpxt  – p–�� �

cnxt n–�� � crxt r–�� �
---------------------------------------------------------------=

yt  –

ytyt  –+ , bm yt m– yt  –+ ,

m 1=

M

�=

) bm) m–

m 1=

M

�=
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Appendix IV: Entropy and Information

Correlation functions, which are essential for measuring dependencies in a linear system, are
nearly useless for nonlinear systems because signals from even simple nonlinear systems can
have broadband power spectra and hence a featureless correlation structure. Information-theoretic
quantities provide an elegant alternative that captures the essential features of a correlation func-
tion, and more. Information of a system x is defined as 

IV.1)                                        

where  is the number of nonzero probabilities,  and  is the probability of the ith bin. The

[self] entropy for system x is defined as

IV.2)                                  

In other words it is the average of the logarithm of the pdf. Then the cross-entropy is given as

IV.3)                                           

If the systems are independent then   therefore

                                  

IV.4)                              

          

                                             

But we need to do this with conditional probabilities. We can write the probability equations as
IV.5)                                   

Therefore

IV.6)                        

From this, as before we obtain
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IV.7)              

                                

Therefore

IV.8)                 

The quantity  is the conditional entropy.  Because of symmetry we can also derive the rela-

tionship  

IV.9)                                           

From these two we can derive the equality   or   .

This new quantity is called mutual  information

IV.10)                         

The conditional entropy  represents an amount of information about Y. The basic uncertainty

 is lessened by an amount equal to . Therefore we can write

IV.11)                       

which is similar to the union operation of sets. It may also be written as
IV.12)                                

We can show also that

IV.13)                        

Thus this relationship is something that does a job similar to that of correlation functions or asso-
ciation functions.
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P(i)Q(j)

      

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.1000 0.0048 0.0095 0.0143 0.0190 0.0238 0.0286

0.1500 0.0071 0.0143 0.0214 0.0286 0.0357 0.0429

0.2000 0.0095 0.0190 0.0286 0.0381 0.0476 0.0571

0.2500 0.0119 0.0238 0.0357 0.0476 0.0595 0.0714

0.3000 0.0143 0.0286 0.0429 0.0571 0.0714 0.0857

Case I Simulation--almost diagonal

 P(i,j)

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.1000 0.1000 0.2000

0.1500 0.1000 0.1000

0.2000 0.2000

0.2500 0.1000 0.1000

0.3000 0.1000

ln(1+p(i,j)/p(i)q(j)

3.0910 3.0910 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.7346 0.0000 1.3350 0.0000

0.0000 0.0000 0.0000 1.8326 0.0000 0.0000

0.0000 0.0000 1.3350 0.0000 0.9858 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.7732

p(i,j)*ln(1+p(i,j)/p(i)q(j)

0.0147 0.0294 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0372 0.0000 0.0477 0.0000

0.0000 0.0000 0.0000 0.0698 0.0000 0.0000

0.0000 0.0000 0.0477 0.0000 0.0587 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0663

distance= 0.6897

Appendix V Initial Exploratory Metric Computations Using Excel
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P(i)Q(j)

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.1000 0.0048 0.0095 0.0143 0.0190 0.0238 0.0286

0.1500 0.0071 0.0143 0.0214 0.0286 0.0357 0.0429

0.2000 0.0095 0.0190 0.0286 0.0381 0.0476 0.0571

0.2500 0.0119 0.0238 0.0357 0.0476 0.0595 0.0714

0.3000 0.0143 0.0286 0.0429 0.0571 0.0714 0.0857

Case II P(i,j)

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.1000 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1500 0.0000 0.3000 0.0000 0.0000 0.0000 0.0000

0.2000 0.0000 0.0000 0.3000 0.0000 0.0000 0.0000

0.2500 0.0000 0.0000 0.0000 0.1000 0.0000 0.0000

0.3000 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000

ln(1+p(i,j)/p(i)q(j)

9.0849 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 7.2937 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 5.9094 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 3.8089 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 3.0253 0.0000

0.0433 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.1042 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.1688 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.1814 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.2161 0.0000

distance= 0.4898
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P(i)P(j)

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.0476 0.0023 0.0045 0.0068 0.0091 0.0113 0.0136

0.0952 0.0045 0.0091 0.0136 0.0181 0.0227 0.0272

0.1429 0.0068 0.0136 0.0204 0.0272 0.0340 0.0408

0.1905 0.0091 0.0181 0.0272 0.0363 0.0454 0.0544

0.2381 0.0113 0.0227 0.0340 0.0454 0.0567 0.0680

0.2857 0.0136 0.0272 0.0408 0.0544 0.0680 0.0816

Simulated P(i,j)

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.0476 0.0476

0.0952 0.0952

0.1429 0.1429

0.1905 0.1905

0.2381 0.2381

0.2857 0.2857

3.0910 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 2.4423 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 2.0794 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.8326 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.6487 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 1.5041

0.1472 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.2326 0.0000 0.0000 0.0000 0.0000

 0.0000 0.0000 0.2971 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.3491 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.3925 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.4297

distance= 0.1575

ln(1+1/j3)--> 3.0910

2.4423

j32*j3--> 0.1472 2.0794

0.2326 1.8326

0.2971 1.6487

0.3491 1.5041

0.3925

Note the result--> 0.1575 0.4297
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Simulated q(i)q(i)

0.1000 0.1500 0.2000 0.2500 0.3000

0.1000 0.0100 0.0150 0.0200 0.0250 0.0300

0.1500 0.0150 0.0225 0.0300 0.0375 0.0450

0.2000 0.0200 0.0300 0.0400 0.0500 0.0600

0.2500 0.0250 0.0375 0.0500 0.0625 0.0750

0.3000 0.0300 0.0450 0.0600 0.0750 0.0900

Simulated P(i,j)

0.1000 0.1500 0.2000 0.2500 0.3000

0.1000 0.1000

0.1500 0.1500

0.2000 0.2000

0.2500 0.2500

0.3000 0.3000

2.3979 0.0000 0.0000 0.0000 0.0000

0.0000 2.0369 0.0000 0.0000 0.0000

0.0000 0.0000 1.7918 0.0000 0.0000

0.0000 0.0000 0.0000 1.6094 0.0000

0.0000 0.0000 0.0000 0.0000 1.4663

0.2398 0.0000 0.0000 0.0000 0.0000

0.0000 0.3055 0.0000 0.0000 0.0000

0.0000 0.0000 0.3584 0.0000 0.0000

0.0000 0.0000 0.0000 0.4024 0.0000

0.0000 0.0000 0.0000 0.0000 0.4399

distance= 0.1745
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Theoretical P(i)Q(j)

      

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857 sums

0.1 0.0048 0.0095 0.0143 0.0190 0.0238 0.0286 0.1

0.15 0.0071 0.0143 0.0214 0.0286 0.0357 0.0429 0.15

0.2 0.0095 0.0190 0.0286 0.0381 0.0476 0.0571 0.2

0.25 0.0119 0.0238 0.0357 0.0476 0.0595 0.0714 0.25

0.3 0.0143 0.0286 0.0429 0.0571 0.0714 0.0857 0.3

sums 0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

Simulation of P vs Q P(i,j) (random)

Simply perturb the P(i)Q(j) above    

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.1 0.0048 0.0095 0.0143 0.0190 0.0238 0.0286

0.15 0.0071 0.0143 0.0214 0.0286 0.0357 0.0429

0.2 0.0095 0.0190 0.0286 0.0381 0.0476 0.0571

0.25 0.0119 0.0238 0.0357 0.0476 0.0595 0.0714

0.3 0.0143 0.0286 0.0429 0.0571 0.0714 0.0857

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.0033 0.0066 0.0099 0.0132 0.0165 0.0198

0.0050 0.0099 0.0149 0.0198 0.0248 0.0297

0.0066 0.0132 0.0198 0.0264 0.0330 0.0396

0.0083 0.0165 0.0248 0.0330 0.0413 0.0495

0.0099 0.0198 0.0297 0.0396 0.0495 0.0594

Distance= 0.5
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Appendix VI  Final Distance Metric Computations

P(i)Q(j)

      

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.1000 0.0048 0.0095 0.0143 0.0190 0.0238 0.0286

0.1500 0.0071 0.0143 0.0214 0.0286 0.0357 0.0429

0.2000 0.0095 0.0190 0.0286 0.0381 0.0476 0.0571

0.2500 0.0119 0.0238 0.0357 0.0476 0.0595 0.0714

0.3000 0.0143 0.0286 0.0429 0.0571 0.0714 0.0857

Case I Simulation--almost diagonal

 P(i,j)

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.1000 0.1000 0.2000

0.1500 0.1000 0.1000

0.2000 0.2000

0.2500 0.1000 0.1000

0.3000 0.1000

total==> 1.0000

ln(1+p(i,j)/p(i)q(j)

3.0910 3.0910 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.7346 0.0000 1.3350 0.0000

0.0000 0.0000 0.0000 1.8326 0.0000 0.0000

0.0000 0.0000 1.3350 0.0000 0.9858 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.7732

p(i,j)*ln(1+p(i,j)/p(i)q(j)

0.0147 0.0294 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0372 0.0000 0.0477 0.0000

0.0000 0.0000 0.0000 0.0698 0.0000 0.0000

0.0000 0.0000 0.0477 0.0000 0.0587 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0663

sum=> 0.3715 s/r-ratio 1.36621628

*pseudo trace==> 0.2719 k/n-ratio 3.75

count==> 8

old distance=> 0.689733 new 0.360754

0.064261

0.064261

* the matrix is not aligned correctly, therefore the largest numbers in

each row was used, since this is what the trace would have been 

if the alignment had been correct.
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P(i)Q(j)

0.0476 0.0952 0.1429 0.1905 0.2381

0.1000 0.0048 0.0095 0.0143 0.0190 0.0238

0.1500 0.0071 0.0143 0.0214 0.0286 0.0357

0.2000 0.0095 0.0190 0.0286 0.0381 0.0476

0.2500 0.0119 0.0238 0.0357 0.0476 0.0595

0.3000 0.0143 0.0286 0.0429 0.0571 0.0714

Case II P(i,j)

0.0476 0.0952 0.1429 0.1905 0.2381

0.1000 0.2000 0.0000 0.0000 0.0000 0.0000

0.1500 0.0000 0.3000 0.0000 0.0000 0.0000

0.2000 0.0000 0.0000 0.3000 0.0000 0.0000

0.2500 0.0000 0.0000 0.0000 0.1000 0.0000

0.3000 0.0000 0.0000 0.0000 0.0000 0.1000

ln(1+p(i,j)/p(i)q(j)

3.7612 0.0000 0.0000 0.0000 0.0000

0.0000 3.0910 0.0000 0.0000 0.0000

0.0000 0.0000 2.4423 0.0000 0.0000

0.0000 0.0000 0.0000 1.1314 0.0000

0.0000 0.0000 0.0000 0.0000 0.8755

0.0179 0.0000 0.0000 0.0000 0.0000

0.0000 0.0442 0.0000 0.0000 0.0000

0.0000 0.0000 0.0698 0.0000 0.0000

0.0000 0.0000 0.0000 0.0539 0.0000

0.0000 0.0000 0.0000 0.0000 0.0625

sum=> 0.2483 s/r-ratio 1

pseudo trace=> 0.2483 k/n-ratio 6

count=> 5  

distance 0.225472731 is good for a diagonal matrix

 

0.002478752 is even better
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P(i)P(j)

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.0476 0.0023 0.0045 0.0068 0.0091 0.0113 0.0136

0.0952 0.0045 0.0091 0.0136 0.0181 0.0227 0.0272

0.1429 0.0068 0.0136 0.0204 0.0272 0.0340 0.0408

0.1905 0.0091 0.0181 0.0272 0.0363 0.0454 0.0544

0.2381 0.0113 0.0227 0.0340 0.0454 0.0567 0.0680

0.2857 0.0136 0.0272 0.0408 0.0544 0.0680 0.0816

Simulated P(i,j)

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.0476 0.0476

0.0952 0.0952

0.1429 0.1429

0.1905 0.1905

0.2381 0.2381

0.2857 0.2857

3.0910 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 2.4423 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 2.0794 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.8326 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.6487 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 1.5041

0.1472 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.2326 0.0000 0.0000 0.0000 0.0000

 0.0000 0.0000 0.2971 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.3491 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.3925 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.4297

old distance= 0.1575

sum 1.8482

trace 1.8482

  count 6

 distance

s/r-ratio 1.0000

k/n-ratio 5.0000

distance= 0.0001 diagonal e.g small

0.0067  

0.0067
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Simulated q(i)q(i)

0.1000 0.1500 0.2000 0.2500 0.3000

0.1000 0.0100 0.0150 0.0200 0.0250 0.0300

0.1500 0.0150 0.0225 0.0300 0.0375 0.0450

0.2000 0.0200 0.0300 0.0400 0.0500 0.0600

0.2500 0.0250 0.0375 0.0500 0.0625 0.0750

0.3000 0.0300 0.0450 0.0600 0.0750 0.0900

Simulated P(i,j)

0.1000 0.1500 0.2000 0.2500 0.3000

0.1000 0.1000

0.1500 0.1500

0.2000 0.2000

0.2500 0.2500

0.3000 0.3000

2.3979 0.0000 0.0000 0.0000 0.0000

0.0000 2.0369 0.0000 0.0000 0.0000

0.0000 0.0000 1.7918 0.0000 0.0000

0.0000 0.0000 0.0000 1.6094 0.0000

0.0000 0.0000 0.0000 0.0000 1.4663

0.2398 0.0000 0.0000 0.0000 0.0000

0.0000 0.3055 0.0000 0.0000 0.0000

0.0000 0.0000 0.3584 0.0000 0.0000

0.0000 0.0000 0.0000 0.4024 0.0000

0.0000 0.0000 0.0000 0.0000 0.4399

old distance= 0.1745

   

sum 1.7459 s/r-ratio 1.0000

trace 1.7459 k/n-ratio 5.0000

count 5.0000

distance 0.0002 diagonal hence should be small

0.0067

0.0067
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Theoretical P(i)Q(j)

      

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857 sums

0.1 0.0048 0.0095 0.0143 0.0190 0.0238 0.0286 0.1

0.15 0.0071 0.0143 0.0214 0.0286 0.0357 0.0429 0.15

0.2 0.0095 0.0190 0.0286 0.0381 0.0476 0.0571 0.2

0.25 0.0119 0.0238 0.0357 0.0476 0.0595 0.0714 0.25

0.3 0.0143 0.0286 0.0429 0.0571 0.0714 0.0857 0.3

sums 0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

Simulation of P vs Q P(i,j) (random)

Simply perturb the P(i)Q(j) above    

0.0476 0.0952 0.1429 0.1905 0.2381 0.2857

0.1 0.0048 0.0095 0.0143 0.0190 0.0238 0.0286

0.15 0.0071 0.0143 0.0214 0.0286 0.0357 0.0429

0.2 0.0095 0.0190 0.0286 0.0381 0.0476 0.0571

0.25 0.0119 0.0238 0.0357 0.0476 0.0595 0.0714

0.3 0.0143 0.0286 0.0429 0.0571 0.0714 0.0857

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.6931 0.6931 0.6931 0.6931 0.6931 0.6931

0.0033 0.0066 0.0099 0.0132 0.0165 0.0198

0.0050 0.0099 0.0149 0.0198 0.0248 0.0297

0.0066 0.0132 0.0198 0.0264 0.0330 0.0396

0.0083 0.0165 0.0248 0.0330 0.0413 0.0495

0.0099 0.0198 0.0297 0.0396 0.0495 0.0594

sum==> 0.6931  s/r-ratio 3.5000

pseudo trace=> 0.1980 k/n-ratio 1

count==> 30  

Distance==> 0.82033536 <------ should be high

0.75147729

0.75147729
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