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All models are wrong, but some are useful.
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Abstract

Optionally transitive verbs, whose Patient participant is semantically obligatory but
syntactically optional (e.g., to eat, to drink, to write), deviate from the transitive prototype
defined by Hopper and Thompson (1980). Following Fillmore (1986), unexpressed objects
may be either indefinite (referring to prototypical Patients of a verb, whose actual entity
is unknown or irrelevant) or definite (with a referent available in the immediate intra- or
extra-linguistic context). This thesis centered on indefinite null objects, which the literature
argues to be a gradient, non-categorical phenomenon possible with virtually any transitive
verb (in different degrees depending on the verb semantics), favored or hindered by several
semantic, aspectual, pragmatic, and discourse factors. In particular, the probabilistic
model of the grammaticality of indefinite null objects hereby discussed takes into account
a continuous factor (semantic selectivity, as a proxy to object recoverability) and four
binary factors (telicity, perfectivity, iterativity, and manner specification).
This work was inspired by Medina (2007), who modeled the effect of three predictors
(semantic selectivity, telicity, and perfectivity) on the grammaticality of indefinite null
objects (as gauged via Likert-scale acceptability judgments elicited from native speakers
of English) within the framework of Stochastic Optimality Theory. In her variant of the
framework, the constraints get floating rankings based on the input verb’s semantic
selectivity, which she modeled via the Selectional Preference Strength measure by Resnik
(1993, 1996). I expanded Medina’s model by modeling implicit indefinite objects in two
languages (English and Italian), by using three different measures of semantic selectivity
(Resnik’s SPS; Behavioral PISA, inspired by Medina’s Object Similarity measure; and
Computational PISA, a novel similarity-based measure by Cappelli and Lenci (2020)
based on distributional semantics), and by adding iterativity and manner specification as
new predictors in the model.
Both the English and the Italian five-predictor models based on Behavioral PISA explain
almost half of the variance in the data, improving on the Medina-like three-predictor
models based on Resnik’s SPS. Moreover, they have a comparable range of predicted
object-dropping probabilities (30-100% in English, 30-90% in Italian), and the predictors
perform consistently with theoretical literature on object drop. Indeed, in both models,
atelic imperfective iterative manner-specified inputs are the most likely to drop their
object (between 80% and 90%), while telic perfective non-iterative manner-unspecified
inputs are the least likely (between 30% and 40%). The constraint re-ranking probabilities
are always directly proportional to semantic selectivity, with the exception of Telic End
in Italian. Both models show a main effect of telicity, but the second most relevant factor
in the model is perfectivity in English and manner specification in Italian.
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1.1 Overview

1.1.1 Relevance of this thesis

This thesis is about the omission of direct objects from predicates headed
by verbs with two semantic participants, i.e., an Agent (in the syntactic
subject position) and a Patient (in the syntactic object position). These
"optionally transitive" verbs, deviating from the transitive prototype
defined by Hopper and Thompson (1980), appear in a wide variety
of contexts cross-linguistically, and are licensed by different semantic,
aspectual, pragmatic, and discourse factors. Within this broad area of
interest, I will focus on indefinite null objects, corresponding to what
Fillmore (1986) called "indefinite null complements". These omitted
objects, as shown in (1-a), refer to something that is "unknown or a
matter of indifference" (Fillmore 1986, p. 96). Indeed, what matters in the
example is that Giulia is writing something, and in particular, something
that is usually written. The actual product of the writing event, be it a
novel, a shopping list, or a doctoral dissertation, is irrelevant. On the
contrary, the referent of definite null objects (which I am not studying in
this thesis) "must be retrieved from something given in the context", as
in (1-b). In this case, the context is provided in the first sentence in the
example, where a reference is made to grad school. Thus, the omitted
object in the second sentence can be understood to refer to a doctoral
thesis (the thing one wants to defend soon when in grad school) rather
than, say, the title of Olympic champion or the national borders.

(1) a. Giulia is writing ∅dObj.
b. Grad school is hard. Giulia hopes to defend ∅dObj soon.

The available literature suggests indefinite object drop to be possible
with different types of verbs to varying extents (for instance, change-of-
state verbs such as to kill are much more resistant to object drop than
incremental-theme verbs such as to eat), and for any given verb, to be
more likely under some specific semantic, aspectual, and pragmatic
circumstances. For instance, a direct object can only participate in the
implicit indefinite object construction if it is recoverable from themeaning
of the verb itself, and transitive verbs are much more likely to be used
without a direct object when they are used in imperfective or iterative
contexts than in perfective, single-occurrence contexts.
While many pages have been written about the role of several linguistic
factors in facilitating or blocking indefinite object drop, as I will detail
in the first section of this thesis, way fewer attempts have been made
to understand the nature of this phenomenon via experimental means,
modeling the joint effect of several predictors of object drop. Medina
(2007) made a substantial step in this direction in her (linear) Stochastic
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Optimality Theoretic model of indefinite object drop in English, taking
into consideration the joint effect of object recoverability, telicity, and
perfectivity on the grammaticality of indefinite null objects (as gauged via
gradient acceptability judgments elicited from native speakers) occurring
with 30 transitive verbs. This model shows that:

I indefinite object drop is a gradient, non-categorical phenomenon;
I it is possible with virtually any transitive verb, but in different

degrees depending on the verb semantics;
I for any given verb, different aspectual features may favor or hinder

object drop.

In the experiments I will perform to study the implicit indefinite object
construction, I inherit Medina’s methodology and employ the same
variant of Stochastic Optimality Theory she devised, with several updates
I will illustrate in Section 1.1.2 and, in more detail, in the experimental
section of this thesis.

1.1.2 Main goals and elements of novelty

This thesis is meant as an expansion upon the original model of indefi-
nite object drop designed by Medina (2007). I will collect acceptability
judgments following her same experimental design and model the data
thus collected within the bounds of the same framework (her variant
of Stochastic Optimality Theory). In doing so, I add several elements of
novelty to the study:

I I will model implicit indefinite objects both in English (like Medina
did) and in Italian (which is included in such a probabilistic model
for the first time), analyzing language-specific differences in the
way several factors facilitate object drop;

I in addition to using Resnik’s (1993) Selectional Preference Strength
measure to quantify semantic selectivity (as a proxy to object re-
coverability), following Medina (2007), I will also define a novel
computational measure based on distributional semantics (Com-
putational PISA, presented in Cappelli and Lenci (2020)) and a
behavioral measure (Behavioral PISA) meant to improve on Med-
ina’s Object Similarity;

I in addition to the three predictors included by Medina in her
model (semantic selectivity, telicity, and perfectivity), I will also
add iterativity and manner specification as predictors to find out
how they affect indefinite object drop andwhether a more complex,
five-predictor model actually provides a more accurate view on
this phenomenon than the original three-predictor model;

I in order to make it easier for future research to build on my results
(possibly applying my method to other languages, or to the same
languages with different predictors) or to replicate them, I intend
to share my materials and document my methods (as well as my
Python scripts), as detailed in Section 1.2.2.

Assuming that my probabilistic models of the gradient grammaticality
of indefinite object drop are solid, this thesis will be an additional cobble-
stone on the well-trodden road of studies about implicit indefinite objects,
omitted arguments, and transitivity-related phenomena. More in general,
it will add to the understanding of the ways several linguistic factors
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1: In the sense intended by Glass (2013,
2020, 2022).

give rise to phenomena that, despite appearing to happen arbitrarily
on a lexically-determined basis, are quite systematic in their behavior.
Thus, looking at this thesis from a much broader perspective, it can also
be argued to be a contribution to research about the systematicity (i.e.,
rule-abiding behavior) of human language and cognition, and about
the interaction of semantic, aspectual, world-knowledge, pragmatic, and
discourse factors in determining the waywe translate our communicative
intentions into syntactically well-formed utterances.

1.2 Contents within and without

1.2.1 Chapters of the thesis and their structure

This thesis is divided into two main parts, one devoted to the review of
the literature on object drop, Optimality Theory, and gradient models
of indefinite null objects (from Chapter 2 to Chapter 5), and another
devoted to my own experiments and the results thereof (from Chapter 6
to Chapter 9). Let us consider each Chapter in more detail.

Theory and literature review In Chapter 2 (Indefinite object drop) I will
define the indefinite implicit object construction as a deviation from the
transitive prototype (see Section 2.1) and in contrast with definite object
drop (see Section 2.2), based on the literature. In Section 2.3 I will argue
that there is virtually no reason why a transitive verb should not be able
to participate in the implicit indefinite object construction (provided
favorable aspectual, semantic, and discourse conditions), and that the
implicit object is understood to be the prototypical Patient for a given
sense of a given verb. In Section 2.4 I will argue that optionally transitive
verbs should only be taken to have a single entry in the lexicon, realized
syntactically either with an overt or with an implicit object, rather than
having two separate lexical entries. In Section 2.5 I will provide the
perspective on indefinite object drop I adopt in my experiments and
throughout this thesis.
In Chapter 3 (Factors allowing indefinite object drop) I will discuss the role
playedby semantic factors (recoverability,Agent affectedness, andmanner
specification, in Section 3.1), aspectual factors (telicity and perfectivity, in
Section 3.2), and pragmatic factors (routine1 , iterativity, habituality, and
discourse factors, in Section 3.3) in facilitating or blocking object drop
with optionally transitive verbs. After some considerations in Section 3.4
on the reasons why corpus frequency is not included among the relevant
factors, I conclude the Chapter in Section 3.5 with the reasoning behind
my choice of predictors of object drop to be used in the experimental
section of this thesis.
Chapter 4 (Towards a Stochastic Optimality Theoretic account of indefinite
object drop) will explain the main tenets of Optimality Theory relative
to syntax (in Section 4.1), the limits of standard Optimality Theory as a
model of the implicit indefinite object construction, and, therefore, why
it is advisable to resort to probabilistic models of grammar that are able
to account for the gradient grammaticality shown by indefinite object
drop, such as Stochastic Optimality Theory (as argued in Section 4.2).
In particular, in this thesis I will adopt the variant of Stochastic Optimality
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Theory specifically designed by Medina (2007) to model indefinite object
drop, which I describe and discuss in Chapter 5 (Medina’s (2007) model).
The contents of the input and the output will be presented in Section 5.1.
In Section 5.2 I will discuss the implementation of the three predictors the
author used in her model (semantic selectivity, telicity, and perfectivity).
The probabilistic ranking of the constraints, which I will introduce in
Section 5.3, will be defined in a top-down perspective (from constraint
ranking as a function of semantic selectivity to object-drop probability
as gradient grammaticality) in Section 5.4, and finally implemented
in a bottom-up perspective (from the acceptability judgments to the
estimation of parameters of the linear functions) in Section 5.5.

Experiments and results Chapter 6 (Linguistic factors used as predictors)
opens the experimental part of this thesis. I will present five facilitating
factors (a continuous factor and four binary factors) of object drop I will
use as predictors in my Stochastic Optimality Theoretic model, picked
among the ones introduced in Chapter 3. The continuous factor is object
recoverability, which Iwill model via three differentmeasures of semantic
selectivity described in Section 6.1, namely Resnik’s (1993) Selectional
Preference Strength (following Medina (2007)), Computational PISA (a
novel measure based on distributional semantics I contributed to define
in Cappelli and Lenci (2020)), and Behavioral PISA (a similarity-based
measure inspired by Computational PISA andMedina’s Object Similarity
measure). The four binary factors are telicity in Section 6.2, perfectivity in
Section 6.3, iterativity in Section 6.4, and manner specification in Section
6.5.
In Chapter 7 (Collecting acceptability judgments: materials and methods)
I will present the materials and methods employed in the behavioral
experiments to collect acceptability judgments from native speakers of
English and Italian relative to the implicit indefinite object construction.
In particular, in Section 7.1 I will describe how I built the experiment with
PsychoPy, how I ran it on Pavlovia, and how I recruited the participants
via Prolific. Finally, I will present my 30-verb target dataset in Section 7.2,
the experimental design in Section 7.3, the stimuli in Section 7.4, and the
experimental setting in Section 7.5.
A first analysis of the data collected with these behavioral experiments
will be provided in Chapter 8 (Exploring the acceptability judgments), where
I will describe the structure of the Python script I devised to perform the
analysis and to compute the models, as well as the procedures of data
preprocessing employed (see Section 8.1), before discussing the separate
and joint effects of semantic selectivity and the four binary predictors
on the acceptability judgments in English and in Italian (see Section
8.2 and Section 8.3, respectively). In Section 8.4, I will argue that the
five factors facilitating indefinite object drop are able to predict, to a
non-negligible extent, the likelihood a transitive verb will appear without
an overt object in a statistical (linear mixed-effects) model, and I will
also explain why Medina’s variant of Stochastic Optimality Theoretic is
a more linguistically-motivated way of modeling these results than the
linguistically-naive statistical model.
I will define and discuss my Stochastic Optimality Theoretic models
of indefinite object drop in English and Italian in Chapter 9 (Predicting
the grammaticality of implicit objects). In Section 9.1, I will describe and
evaluate my 18 models, stemming from the union of three measures
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2: https://github.com/giuliacappelli/
dissertationData

3: https://github.com/giuliacappelli/
checkPolysemy

4: https://github.com/giuliacappelli/
behavioralPISA
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of semantic selectivity, three increasingly more complex constraint sets
(Medina’s basic set, another with the addition of iterativity, and a full set
with manner specification too), and two target languages. In Section 9.2, I
will discuss the theoretical aspects and computational implementation of
the two full models of object drop in English and Italian where semantic
selectivity ismodeled via Behavioral PISA. Iwill then comparemymodels
with Medina’s model and with regression models in Section 9.3.
Finally, I will provide my conclusions and propose some possibile future
directions for research about modeling the implicit indefinite object
construction in Chapter 10 (Conclusions and open questions).

1.2.2 Supporting materials

With an eye to theOpen Science environment, I used open source software
and programming languages to collect and analyse data for this thesis
whenever possible, and I am sharing my data, scripts and results on
GitHub. The interested reader will find my data, i.e., the stimuli for each
experiment and the raw results I got from participants, in a dedicated
GitHub repository2 . In more detail, this repository contains:

I 30 target verbs and 10 filler verbs both for English and for Italian,
used in all the computational (see Section 6.1) and behavioral (see
Section 6.1.3 and Chapter 7) experiments, as in Appendix A;

I full lists of the direct objects of each target verb as extracted from
the ukWaC corpus for English and from itWaC for Italian, both raw
and manually cleaned (as detailed in Section 6.1.2);

I stimuli, full judgments elicited from 25 participants per language
on a 7-point Likert scale, and final scores obtained in the Behavioral
PISA experiment (see Section 6.1.3), also provided in Appendix B;

I each verb tagged with its features relative to the verb-specific
predictors of object drop, i.e., telicity, manner specification, and
semantic selectivity, as in Appendix C;

I stimuli and full judgments elicited from 30 participants per lan-
guage on a 7-point Likert scale in the main behavioral experiment
of this thesis (see Chapter 7), aimed towards creating a Stochastic
Optimality Theoretic model of object drop in English and Italian
(see Chapter 9), as in Appendix D.

As for the data processing, analysis of results, computational implemen-
tation of experimental designs, and creation of stimuli, I coded several
Python scripts and documented their usage on GitHub. In detail, they
are as follows:

I Quantify the polysemy of words in a list3 using WordNet (Wu-
Palmer Similarity), as in Section 7.2;

I Behavioral PISA4 , a (behavioral) measure of Preference In Selec-
tion of Arguments to model verb argument recoverability, as in
Section 6.1.3. The script takes care both of creating the stimuli for
the experiment and of generating Behavioral PISA scores based
on the Likert-scale acceptability judgments provided by human
participants;

I PsychoPy Builder source code5 of my behavioral experiments to
collect acceptability judgments relative to the implicit indefinite

https://github.com/giuliacappelli/dissertationData
https://github.com/giuliacappelli/dissertationData
https://github.com/giuliacappelli/checkPolysemy
https://github.com/giuliacappelli/behavioralPISA
https://github.com/giuliacappelli/psychopy_exps
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object construction from native speakers of English and Italian,
described in Chapter 7;

I Psychopy-to-Medina converter6 , to convert the output of my
PsychoPy behavioral experiment (see Chapter 7) into a suitable
input for my scripts to analyse the results (see Chapter 8) and create
Stochastic OT models of the implicit object construction following
Medina (2007) (see Chapter 9);

I Modeling the grammaticality of implicit objects7 based on Medina
(2007)’s variant of Stochastic Optimality Theory, as in Chapter 8
and Chapter 9;

I Generate mock Likert-scale acceptability judgments8 based on
factor levels specified in the input, to test the above Stochastic
Optimality Theoretic model on ideal data before running the
experiment proper.

1.2.3 Published work and outreach

Relevant parts of the experimental section of this thesis have been
shared with the scientific community, both in written form and during
conferences. The original distributionalmeasure of Preference In Selection
of Arguments (Computational PISA) presented in Cappelli and Lenci
(2020) and discussed here in Section 6.1.2, tested on large sets of transitive
verbs and Instrument verbs in English, was presented at:

I *SEM 2020, 9th Joint Conference on Lexical and Computational
Semantics, December 12-13th 2020, online due to the Covid-19
pandemic (originally in Barcelona, Spain);

I LSA2021, 95thAnnualMeeting of the Linguistic Society ofAmerica,
January 7-10th 2021, onlinedue to theCovid-19pandemic (originally
in San Francisco, California);

I CLiC-it 2020, 7th Italian Conference on Computational Linguistics,
March 1-3rd 2021, online due to the Covid-19 pandemic (originally
in Bologna, Italy).

The results of the main behavioral experiment of this thesis (detailed in
Chapter 7 and Chapter 8), especially the ones pertaining to Italian, were
presented at:

I SyntOp 2022, Syntactic Optionality in Italian, July 4-5th 2022,
Venice (Italy).

https://github.com/giuliacappelli/PsychopyToMedina
https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory
https://github.com/giuliacappelli/generateMockLikertGrammaticalityJudgments
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As mentioned in Chapter 1, this thesis is about implicit indefinite objects.
What is "indefinite" about them? In what sense can they be considered
"implicit"? And ultimately, what is objecthood itself? This Chapter will
answer these questions in reverse order, from the most general to the
most specific one. In Section 2.1 I will make reference to the transitivity
continuum, as defined by Hopper and Thompson (1980) and further
explored by later literature. In Section 2.2 a crucial distinction will be
made between definite and indefinite object drop, following Fillmore
(1986) and subsequent works. The nature of indefinite object drop will be
finally described in Section 2.3 and Section 2.4, and a working definition
(for the purposes of this thesis) will be provided in Section 2.5.
Before delving into the main contents of the Chapter, a terminological
clarification is in order. Throughout this thesis, I refer to an "intransitive"
use of transitive verbs to intend the absence of a possible overt syntactic
object for verbs which semantically take an Agent and a Patient argument,
e.g., John broke (the window). Crucially, I am not referring to senses of
such verbs where the subject is non-Agentive (e.g., The ball broke the
window), or to their unaccusative (Perlmutter 1978), anticausative uses1
(e.g., The window broke), nor am I referring to verbs that have two semantic
participants (an Agent and a Patient) but can only express the internal
argument2 (corresponding to the Agent participant) syntactically, such
as to dine.

2.1 Transitivity as a prototype

School kids everywhere are used to call "transitive" the verbs which take
an overt direct object. In a traditional semantic definition, a clause is
deemed "transitive" if it describes an event where the action performed
by an Agent "passes over"3 to a Patient, which usually undergoes some
kind of transformation.
Going beyond these naive definitions, but still capturing their spirit,
Hopper andThompson (1980) first proposed an accountwhere transitivity
is interpreted as a scalar concept whose strength depends on several
parameters, or, to use more modern terminology, as a prototype category
(Næss 2007). In particular, they identified ten parameters (Hopper and
Thompson 1980, p. 252), reported almost verbatim in Table 2.1.

These parameters are potentially active in all languages, but languages
may differ from one another with respect to the actual subset of parame-
ters they select as necessary criteria for transitivity. This depends on the
"recursivity" (Næss 2007, p. 29) of prototypical concepts, which assign
membership in a category (in this case, transitive clauses) on the basis
of attributes which are prototype concepts themselves (J. R. Taylor 1995,
p. 61).
Parameters A, B, E, F, andG fromTable 2.1 are self-explanatory. Parameter



2.1 Transitivity as a prototype 9

high transitivity low transitivity

A. Participants 2+ (Agent and Object) 1 participant
B. Kinesis action non-action
C. Aspect telic atelic
D. Punctuality punctual non-punctual
E. Volitionality volitional non-volitional
F. Affirmation affirmative negative
G. Mode realis irrealis
H. Agency A high in potency A low in potency
I. Affectedness of O O totally affected O not affected
J. Individuation of O O highly individuated O non-individuated

Table 2.1: Hopper and Thompson (1980,
p. 252) defined transitivity as a prototype
concept determined by ten parameters.

C (telicity) will be discussed in more detail in Section 3.2.1. Parameter
D (punctuality) refers to the phase between inception and completion
of an action, which is non-existent in verbs like to kick and obviously
present in verbs like to carry. Parameter H (agency) separates animate and
inanimate subjects. Parameter I (affectedness of the object) determines
that sentences like I drank up the milk are more transitive than sentences
like I drank some of the milk, since the milk is only partially affected by
the drinking in the latter sentence. Finally, parameter J (individuation
of the object) refers to the distinctness of the object both from the Agent
and from the background, as summarized in Table 2.2 (Hopper and
Thompson 1980, p. 253).

individuated non-individuated

proper common
human, animate inanimate

concrete abstract
singular plural
count mass

referential, definite non-referential

Table 2.2: Hopper and Thompson (1980,
p. 252) defined transitivity as a prototype
concept determined by ten parameters.

The individuation parameter is the most controversial among the ten
proposed ones, as observed by Comrie (1989, p. 128) and later on by
Næss (2007, p. 18). According to what has come to be known as "Comrie’s
generalization", in prototypical transitive clauses both animacy and
definiteness are high in the Agent and low in the Patient, contra Hopper
and Thompson (1980). The weak argumentation Hopper and Thompson
(1980) provide in favor of the individuation parameter is that speakers
would be more likely to focus on the Patient in I bumped into Charles than
in I bumped into the table, since bumping is more likely to affect human
beings than tables. Comrie (1989) makes a much more compelling point
with reference to cross-linguistic typology, basing the generalization on
the animacy hierarchy and on referential case-marking (which I will
not discuss here, since it would lead me too far from my topic). Later
literature (Kardos 2010; Kemmer 1993; Næss 2007, 2009) reinforced this
point by assuming that prototypical transitive events are described by
verbs whose subject and object are maximally distinct from a semantic
point of view.
To sum up, the terse summary by Næss (2007, p. 15) clearly shows
the relation between the naive definitions of transitivity and the ten-
parameter account by Hopper and Thompson (1980). A prototypical
transitive clause is understood to describe an event such that:



10 2 Indefinite object drop

I a volitional Agent (E, H)
I performs an action (B)
I with a tangible, lasting effect on a Patient (A, I, J),
I and it is presented as real and completed (C, D, F, G).

Lorenzetti (2008, p. 78) provides a tighter cluster of parameters, arguing
that only a subset of the ones proposed by Hopper and Thompson (1980)
are truly relevant. In particular, the author ditches the criteria relative to
the transitive event being real and completed (C, D, F, G), and only keeps
agentivity, affectedness, and individuation of the object among the other
groups of criteria.

2.2 Definite vs indefinite drop

In Section 2.1 I introduced transitivity as a prototype concept depending
on a cluster of parameters and, specifically, involving an Agent acting
on a Patient. But what about utterances where events of this kind are
expressed without an overt syntactic object? In this Section I will provide
an account of the literature on the matter.

2.2.1 Either definite or indefinite: discrete accounts

Introduction Verbs behaving intransitively are, using words by Ruther-
ford (1998, p. 191), "a mixed bag". Consider, for instance, the examples in
(1). The sentence in (1-a) features a typical intransitive verb, describing
an event where the subject is not performing an action with effects on
some Patient. The sentence in (1-b) also describes an event where the
subject is not volitionally acting on a Patient, but it is nevertheless clear
that there has to exist something that John knows (unlike in (1-a), where
there cannot be something that John sleeps). The sentence in (1-c) has an
Agent acting volitionally on a Patient, which is however not instantiated
syntactically as an overt direct object.

(1) a. John slept.
b. John knew.
c. John ate.

There is a clear similarity between (1-b) and (1-c), as opposed to (1-a). They
both require a Patient/Theme semantically (Somers 1984, p. 510), and they
both surface as object-less syntactically. Quoting Yasutake (1987, p. 48),
"they are different from pure intransitives in that the action will not be
complete without some lexically implied (but unspecified) object". Oddly,
some literature (Bourmayan and Recanati (2013) and D. Liu (2008) a.o.)
does not interpret such verbs as transitive-become-intransitive verbs via
the omission of the direct object, but as intransitive-made-transitive verbs.
Such an interpretation is totally counter-intuitive and it goes against
the generally-accepted tenet that a core feature of so-called "intransitive
verbs" is that they have no object slot available in the syntax.
There is, however, a crucial difference between (1-b) and (1-c). Native
speakers of English insist that they have to be provided some context
in order to understand (1-b) —what is it exactly that John knew? On
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4: Refer to David (2016) for more observa-
tions on implicit objects and other omissi-
ble elements usually being "the ground in
a figure-ground relation".

the contrary, (1-c) can be interpreted to mean that John had a meal at a
certain moment in time, without specifying any additional context. This
distinction was captured and defined by Fillmore (1986) (building upon
Allerton (1975) and Fillmore (1969)), the established seminal work on the
distinction between so-called "definite" and "indefinite" object drop (here
represented by (1-b) and (1-c), respectively).

Fillmore’s account Fillmore (1986, p. 96) distinguishes between Indefi-
nite Null Complements (hence, INC) and Definite Null Complements
(hence, DNC) by testing "whether it would sound odd for a speaker to
admit ignorance of the identity of the reference of the missing phrase". So,
making reference to (1) again, there would be no issue with saying "John
ate. I wonder what he ate.", but it would be quite odd to say "John knew.
I wonder what he knew.". Thus, the missing object in (1-b) is a DNC,
while the missing object in (1-c) is an INC. Fillmore than splits INCs into
two sub-groups based on whether the omitted object is "of considerable
generality" or "requiring the specification of various degrees of semantic
specialization". The examples in (2) (Fillmore 1986, pp. 96–97) show
increasing degrees of, using his words, "semantic specialization". In (2-a),
the subject cannot perform the very act of eating or drinking, regardless
of the actual ingested item. In (2-b) something specific was eaten, but its
specific nature is irrelevant inasmuch the speaker is referring to eating
as the act of having a meal. In (2-c) the omitted object is referring not
just to any drinkable liquid, but to alcohol specifically. Finally, in (2-d)
something very specific was baked by the subject, but this information is
backgrounded4 to focus on the activity itself (I will come back to this in
Section 2.4.2).

(2) a. When my tongue was paralyzed I couldn’t eat or drink.
b. We’ve already eaten.
c. I’ve tried to stop drinking.
d. I spent the afternoon baking.

However, as it will be shown throughout this Chapter, this secondary
division of INCs into subgroups does not have to be a binary theoretical
distinction. On the contrary, it follows from several finer-grained consid-
erations on the nature of INCs and the factors allowing them. Moreover,
this binary division actually opens the door to discussions about a DNC-
INC continuum (more details on this in Section 2.2.2). Specifically, how is
"semantic specialization" different from the "knownness" of the object in
DNC constructions (Eu 2018, p. 525)? An answer can be found in Allerton
(1975, p. 218), where the case is made that semantically specialized INCs
(just like any INC) refer to a category of individuals, while DNCs refer to
specific instances of a given category.
Going back to the main distinction between INCs and DNCs, finally,
Fillmore (1986) formally defines the former as objects whose "referent’s
identity is unknown or a matter of indifference" and the latter as objects
whose referent "must be retrieved from something given in the context".
This context "has either to be given linguistically, in the preceding context,
or extralinguistically, in the situational context" (Stark and Meier 2017,
p. 13).
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Other accounts Several other researchers made use of the distinction
between definite and implicit indefinite objects brought to the fore by
Fillmore (1986), providing slightly different definitions which capture
different aspects of the phenomenon. Allerton (1975), then further de-
veloped by Fillmore, distinguishes between "contextual omission" and
"lexical omission", which respectively refer to Fillmore’s DNCs and INCs.
Cummins and Roberge (2004) distinguish between "internally-licensed
null objects" (INCs) and "referential null objects" (DNCs). According to
Ruppenhofer (2005) and Pethõ and Kardos (2006, p. 30), INCs "receive
an existentially quantified interpretation", while DNCs are "interpreted
anaphorically and must therefore have an appropriate antecedent in
context to make sense" (Fillmore (1986) himself referred to this in the title
itself, "Pragmatically Controlled Zero Anaphora"). The anaphoric status
of DNCs is also central in Keller and Maria Lapata (1998). Medina (2007,
p. 13), the foundational work upon which I am basing my own model of
the indefinite object construction, sees DNCs as "implicit objects whose
particular meaning can be recovered from the preceding discourse or
disambiguating physical context" and INCs as "implicit objects whose
meaning is recoverable only from the verb in the sentence". Here the focus
is all on recoverability, and the author goes on to show that semantic
recoverability can be a reliable predictor of object drop in INC sentences.
D. Liu (2008, p. 293), following García-Velasco and Muñoz (2002), takes
the shift away from lexical semantics and onto aspectual territory. In
particular, the point is made that INCs involve a change of focus "from the
object in the transitive use to the activity (the verb) itself in the intransitive
use" (an idea that I will discuss in full detail in Section 2.4.2), while DNCs
do not determine such a shift.
The accounts provided so far are not in conflict with Fillmore’s formula-
tion of the problem at hand, nor are they in conflict with the view I am
adopting in this thesis in order to provide a probabilistic model of the
implicit object construction. Other accounts, on the other hand, are more
challenging and deserve a more thorough clarification. Let us consider
the most relevant ones for my argumentation.
Tonelli and Delmonte (2011, p. 55) argue that, while INCs are "construc-
tionally licensed, in that they apply to any predicate in a particular
grammatical construction", DNCs are "lexically specific, in that they
apply only to some predicates". Later in this Section (on Page 13) and in
Section 2.2.2 I will bring evidence in support of the opposite point of
view, which is in favor of seeing DNCs as (extra- and intra-linguistically)
contextually, not lexically, determined. Moreover, Tonelli and Delmonte’s
(2011) account is in direct conflict with Fillmore (1986, p. 95), who argues
that INCs are "limited to particular lexically defined environments" (such
as the object slot of to eat and to read). In this regard, I side with Tonelli
and Delmonte (2011). My probabilistic model of INCs (the results thereof
are discussed in Chapter 8 andmodeled in Chapter 9) will provide strong
evidence in support of the idea that any transitive verb can participate in
INC constructions, provided the right aspectual, semantic, and pragmatic
features. Indeed, as noted by Huddleston et al. (2002, p. 216), transitivity
is better thought of as a property of verb use, rather than a feature of
verbs themselves.
In a pragmatic (in particular, not lexical) perspective, AnderBois (2012,
p. 44) and Melchin (2019, pp. 53–54) both stay true to Fillmore’s original
interpretation of DNCs as "pragmatic anaphoras", arguing that DNCs
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corefer with other referents in the discourse. Moreover, they maintain
that INCs lack the possibility of having coreferential interpretations.
Fillmore himself (Fillmore 1986, p. 97) made this point with example
(3), where (3-b) cannot be considered a proper answer to the question
in (3-a). This is taken to mean that there is no co-reference between the
sandwich and the implicit object of to eat in (3-b).

(3) a. What happened to my sandwich?
b. *Fido ate.

However, examples canbeprovided in support of theopposite.Groefsema
(1995, pp. 142–144) makes use of sentences such as the one in (4) to argue
that INCs can indeed refer to specific individuals, provided sufficient
linguistic context. As Scott (2006, p. 168) observes, omissions of this
kind "allow the speaker’s meaning to hover between the definite and
indefinite readings", so that the interpretation the hearer applies to the
omitted object is "specific yet indefinite". I will come back to other blurred
distinctions between definite and indefinite object drop in Section 2.2.2.

(4) John picked up the glass of beer and drank.

Nevertheless, this account does not disrupt Fillmore’s foundation. As
explained by Eu (2018, p. 527), not even in sentences like (4) do INCs
force the identification of a specific referent. What happens, instead, is
that native speakers processing INCs in a flexible context of this kind
can be induced to understand the missing object as if co-referring to the
previously mentioned one. Thus, INCs can grammatically dissociate the
mentioned referent from the one implied by the missing object, while
this possibility is not active for DNCs (which are always co-referential,
regardless of the context). Considering eventualities like this, it really is no
wonder that Cote (1996, p. 110), with respect to implicit objects in English,
spoke of "murky water" in relation to the distinction between lexically-
provided information and context available via world knowledge.

Genre-based implicit objects: a special case of definite object drop I
will now discuss genre-based implicit objects, a type of DNCs whose very
existence goes in favor of DNCs being virtually possible with any verb,
provided it appears in a discourse context that is conducive to object
omission (contra Tonelli and Delmonte (2011, p. 55), pro Goldberg (2001)).
To quote Ruppenhofer and Michaelis (2010, p. 175), "argument omission
can but need not be licensed by a lexeme". This possibility was first
observed by Fillmore (1986, p. 95), who acknowledged that in "certain
kinds of highly restricted mini-genres" (e.g., instructional imperatives in
recipes) the omission of objects and other non-subject complements is
not lexically determined (see also Haegeman (1987, p. 237)). Crucially,
it is not the case that there is a special grammar of recipe contexts that
supersedes the actual grammar of the language the recipe uses (Cote
1996; Culy 1996). On the contrary, recipes and other specialized genres
just serve to provide an encompassing discourse and world-knowledge
context to the listener/reader. Sigurðsson and Maling (2008, pp. 30–31)
observe that this strong link between genre-licensed DNCs, discourse
context, and communication goals may be the reason why this type of
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5: As noted by Ruppenhofer and
Michaelis (2010, p. 162), non-instructional
imperatives cannot participate in DNC
constructions, as shown in their example
Take *(the money) and run.

object drop is much more common cross-linguistically than other types.
Not only that, but genres are so intertwined with argument omission
that it is sometimes possible to evoke a genre just by performing the right
kind of DNC, as Ruppenhofer and Michaelis (2010, p. 159) exemplify by
making reference to the title of a novel by Cynthia P. Lawrence, "Chill ∅
before Serving ∅: A Mystery Novel for Food Lovers" (a clear reference to
instructional imperatives found in recipes).
Many linguistic analyses of DNCs licensed in "mini-genres" focus on
recipe contexts (Ahringberg 2015; Bender 1999; Culy 1996; García-Velasco
and Muñoz 2002; Massam 1992; Massam and Roberge 1989; Megitt 2019;
Paul and Massam 2021; Ruda 2014). In particular, Culy (1996) performed
a multiple regression analysis on diachronic sets of contemporary and
historical recipes with several predictors, finding that the style of a recipe
book and discourse factors are the most important predictors of recipe
DNCs.
Other authors provided accounts pertaining to a broader spectrum of
genres. For instance, in addition to recipes, Cote (1996) also considers "tele-
graphese", i.e., the telegraphic register used in telegraphs, memos, and
signs. A. Weir (2017) focuses on what he calls "reduced written register"
in English, i.e., the absence of objects in recipes, instructional/directive
imperatives5 , diaries, text messages, internet-based communication, and
similar contexts. The presence of DNCs in text messages and internet-
based communication is further explored by Stark and Meier (2017) and
Stuntebeck (2018), focusing on Whatsapp messages. D. Liu (2008, p. 304)
mentions instructional languages, such as that found on manuals, warn-
ing signs, and product labels. Paesani (2006) provides a thorough account
of object (and subject) drop in special registers (such as recipes, diaries,
and headlines), noting clear similarities between DNCs in recipes and
the broader phenomenon of Topic drop (Paesani 2006, p. 165). Focusing
instead on non-contemporary language found in historical texts, it is
possible to find studies by Almeida (2009) on Middle English medical
texts, and by Korkiakangas (2018) on Early Medieval documentary Latin.
In an unconventional account of football language, Bergh and S. Ohlander
(2016) argue that verbs licensing DNCs are "monotransitives" (Quirk et al.
1985, p. 54) in this sublanguage, since they can only take one argument.
Let us consider the examples in (5).

(5) a. Iniesta passed (the ball) and Messi finished (the attack) clini-
cally.

b. John passed *(the salt) and finished *(his steak).

In (5-a), the direct objects can be omitted because the two footballers
are performing acts that need no further explanation in the football
community. In this game, you can only pass balls and finish attacks.
Incidentally, Dvořák (2017b, p. 266) notes something similar about some
verbs in Czech (e.g., smeknout ’to uncap, to tip’ the hat one is wearing,
zaparkovat ’to park’ the vehicle one is driving) having "idiomatized
meanings [...] limited to a particular jargon or slang" and, crucially,
allowing "only one particular entity in the role of an internal argument".
Moreover, given the presence of a single ball against many players, match
reports are much more likely to DNC the ball rather than the footballers,
as observed by Ruppenhofer and Michaelis (2010, p. 167) and Ebeling
(2021). On the contrary, in the probable context of a dinner in (5-b),
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6: In this case, world knowledge about
American football.

it is not possible to say that John just "passed" or "finished", let alone
clinically. Bergh and S. Ohlander (2016, p. 22) explain the existence of
DNCs in football reports (and, more generally, object omission) as a
manifestation of the "principle of least effort" (Zipf 1949) and also of
the Gricean pragmatic maxim of quantity, which compels speakers to
avoid being more informative than necessary. However, as Ruppenhofer
and Michaelis (2010, p. 166) observed before, "genre-based omissions
are never obligatory", since the maxim of quantity (favoring implicit
objects) is counterbalanced by the need for informativeness (favoring
overt objects).

2.2.2 Neither definite nor indefinite: continuous accounts

The account of genre-determined DNCs offered in Section 2.2.1 opens
the door to a broader discussion of Fillmore’s (1986) distinction between
definite and indefinite omitted objects. As argued in Ruppenhofer and
Michaelis (2010, p. 165) and Bergh and S. Ohlander (2016, p. 24), the main
factor allowing for an object to be omitted is its recoverability (refer to
Section 3.1.1 for a full discussion), which depends on linguistic aspects
as well as on contextual and discourse factors, and on world knowledge
too. Focusing on recoverability makes it possible to go beyond the binary
distinction between INCs and DNCs provided by Fillmore (1986) and
many others, and also beyond the need to postulate verb-specific object-
dropping capabilities. In particular, it paves the way for a non-binary
account of object drop, where no clear-cut distinction between two types
of omission have to be postulated (something that, in essence, was already
implicit in Hopper and Thompson’s (1980) assumptions).
If recoverability is the cornerstone of object-droppability, and if it is a
scalar, or even graded, feature of objects, then it stands to reason that
object-droppability itself is a graded phenomenon. Taking a small step
forward in this direction, AnderBois (2012) posits the existence of "flexible
implicit arguments" to explain sentences like The Giants won ∅, whose
implicit object has a referent known to the reader (as with DNCs), which
is, crucially, known because of world knowledge6 and not because of
the presence of a linguistic antecedent (as with INCs). Cummins and
Roberge (2005) provide what they call a "modular account" of null objects
in French, stemming from the intersection of several syntactic, semantic,
pragmatic and discourse factors (a similar account of object drop, still
abiding to Fillmore’s binary distinction, is provided by Cennamo (2017)).
A more cogent, continuous account is offered by Glass (2013), who
acknowledges that there is "plenty of middle ground" between minimum
recoverability (an object has to exist but it is unknown) and maximum
recoverability (the specific identity of the object is known). In particular,
she argues that, in order to be omitted, an object just has to be sufficiently
recoverable for speakers to communicate felicitously, and that community-
or genre-specific sublanguages are more prone to certain kinds of object
omission simply because those smaller contexts favor object recoverability.
Moreover, she explicitly argues against an INC-DNC distinction (Glass
2013, p. 1). A pioneering attempt to bring evidence in favor of the intuition
that recoverability is the key in object omission is found in Resnik (1993,
1996), an information-theoretic account of selectional constraints testing,
among other things, the relationship between transitivity and discourse
context (more on Resnik’s method in Section 6.1.1).
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7: Such as Ruppenhofer and Michaelis
(2014), arguing that object drop is "an as-
pect of argument realization licensed by
lexemes, which may differ from one an-
other in idiosyncratic ways".

8: If one does not consider saliva.

As Iwill argue later in Section 2.5, I stay agnosticwith respect to the binary
or continuous nature of object-droppability in my account of indefinite
null objects. Following binary accounts, such a study would simply
be a matter of considering those factors which are known to favor the
emergence of INCs. On the other hand, under continuous-droppability
assumptions, it would be a more complex matter of modeling both
contexts and linguistic factors determining any kind of object drop,
trying to position implicit null objects in a specific portion of the object-
droppability spectrum.

2.3 Defining the indefinite

In this Section I will delve into a detailed discussion on implicit indefinite
objects, the focus of this dissertation. In Section 2.2 I reported a series of
both now-classic and more recent accounts of the differences between
so-called definite and indefinite null objects. Let us now comment on
the nature of the latter, which were given several labels in the literature
(objects of "detransitive verbs" inYasutake (1987, p. 46), "implicit objects" in
Glass (2013) and Pethõ and Kardos (2006, p. 29), or "pseudo-intransitive",
"labile", "ambitransitive", "null complements", "understood arguments",
"unspecified objects", "null instantiations" in other authors).

2.3.1 Which verbs?

Traditionally (contra this thesis and Tonelli and Delmonte (2011, p. 55),
among others), indefinite null objects are taken to only be possible
with a restricted set of activity verbs. For instance, Rizzi (1986, p. 510)
provides an argument in favor of indefinite object drop being "lexically
governed" in English on the basis that in some pairs of semantically
related verbs (e.g., to eat and to devour) one member of the pair allows
for object drop, while the other does not. Haegeman (1987, p. 236) does
not hesitate to define this account "convincing", and similar notes are
also found in Fillmore (1986), Gillon (2012), Mittwoch (2005), and Rice
(1988). I will come back on the theory referring to specific case of these
"semantic minimal pairs" in Section 3.1.3. The important aspect, here, is
that traditional or traditionally-leaning literature7 has trouble motivating
implicit indefinite objects on the basis of meaning alone, but it also needs
it to be lexically determined. With that said, which verbs does then the
literature identify as allowing indefinite object drop?
First of all, the verbs under consideration drop syntactic arguments,
crucially, not semantic ones. In other words, indefinite object drop are
obligatory semantic arguments of such verbs (Cote 1996, p. 120), while
they do not surface syntactically (more on the syntax of implicit indefinite
objects in Section 2.4.2). Jackendoff (2003, p. 134) specifically observes that
it is quite inaccurate to say that such verbs "license an optional argument",
since this definition "conflates semantic and syntactic argument structure".
He illustrates this point by comparing to eat and to swallow in (6). Both
show identical syntactic behavior, but while it is possible to swallow
without swallowing anything8 , it is not possible to eat without eating
something.
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9: Please refer to Rappaport Hovav and
Levin (2005, p. 279) and Kardos (2010, p. 4)
for an extensive account of incremental
themes.

10: An unfortunate choice for a single ex-
ample of the whole category of object-
dropping verbs, as we will see later in
Section 2.4.2.

(6) a. Bill ate (the food).
b. Bill swallowed (the food).

Another key point in traditional literature on implicit indefinite objects
concerns the difference between change-of-state verbs (such as to break,
to harden, to open) and pseudo-transitive verbs (such as to eat, to write, to
sweep). Verbs belonging to the former class are prototypically transitive
(Hopper and Thompson 1980; Kardos 2010; Lemmens 2006), since they
feature two maximally distinct arguments (a volitional Agent subject
and a non-volitional Patient object), while verbs belonging to the latter
class exhibit both transitive and intransitive features (Armstrong 2011).
Thus, only pseudo-transitives can license indefinite null objects in this
dichotomy. They also appear to be a semantically rich class, comprising
verbs of creation (e.g., to cook, to write, to knit), verbs of ingestion or con-
sumption (e.g., to eat, to drink), and verbs of surface contact (e.g., to sweep).
While syntactically they have their ambivalent behavior in common,
semantically they share the fact that their objects all are "incremental
themes"9 , a term originally proposed by Dowty (1991) to refer to verbs
showing homomorphism between the physical extent of their object and
the temporal progress of the event. Thus, to eat is an incremental-theme
verb because the Patient gets progressively smaller while ingested by the
Agent, to write because the Theme gets progressively more wordy while
the Agent types or pens it, and so on. On the contrary, pace Dowty’s at-
tempt to apply this analysis to change-of-state verbs (Dowty 1991, p. 568),
to close is not an incremental-theme verb because sentences like Matt
closed the door half-way do not entail that half the door was closed (Rappa-
port Hovav and Levin 2005, p. 279). Since incremental-theme verbs can
behave both transitively and intransitively, in Levin (1993, p. 33) they are
said to participate in the "unspecified object alternation". The author also
provides a list of more than 40 verbs allowing for indefinite object drop,
an event which Dvořák (2017a, p. 116) praises as a major breakthrough
after previous literature only focusing, "somewhat disturbingly", on the
sole verb to eat10 .
As I will show with the probabilistic model of indefinite null objects I de-
fine in this dissertation (final results presented in Chapter 9), object drop
is possible both with change-of-state verbs and with incremental-theme
verbs, the difference being a matter of degrees (determined by several
linguistic factors, see Chapter 3 and Chapter 6), not a binary feature as in
traditional accounts.

2.3.2 Which objects?

While syntactically unexpressed and semantically unspecified (at least
with respect to a specific entity), implicit indefinite objects of the verbs
allowing them still have to refer to something. To what, though? Is it
possible to generalize the answer?

Omitting something This something that object-dropping verbs refer to
has been interpreted quite literally in traditional literature on the issue.
Katz and Postal (1967) and Fraser and Ross (1970) distinguish between
the deletion of it (expressed by the constructions which Fillmore (1969,
1986) made known as "definite null complements") and the deletion of
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11: Please refer to Carnie (2012), a thor-
ough handbook of generative syntax, for
a gentle introduction to scope-taking con-
stituents and the use of logic operators in
syntax.

something (expressed by indefinite null objects). A similar consideration
is also found, in passing, in Pethõ and Kardos (2006, p. 30) and in
Ahringberg (2015, p. 6).
However, several objections can be made to this idea. Historically, the
first came from Mittwoch (1982, 2005), who argued that the omitted
object cannot be something because "this would be incompatible with the
atelic nature of the resulting sentence". I will come back to telicity, and
the somewhat different approach I will embrace in the next Chapters, in
Section 3.2.1. Other authors (Condoravdi andGawron 1996; Dvořák 2017a;
Jerry Fodor and Janet Fodor 1980; Gillon 2006, 2011, 2012; Lasersohn
1993; Martí 2015; Melchin 2019) argue instead that implicit indefinite
objects have to be interpreted as "weak indefinites" (Melchin 2019, p. 55)
as bare masses and plurals, instead of the indefinite pronoun something,
because only the former have obligatory narrow scope with respect to
other quantifiers in the sentence (a behavior shown by indefinite null
objects)11 . Let us consider the examples in (7), taken from (Melchin 2019,
p. 55). In (7-a) only the universal quantifier in the subject can take wide
scope and the implicit object has to take the lowest scope, while in (7-b)
either the universal quantifier in the subject or the existential quantifier
in the object can take wide scope.

(7) a. Everyone ate. ∀ > ∃ / # ∃ > ∀
b. Everyone ate something. ∀ > ∃ / ∃ > ∀

Let us unpack this notation. This means that in (7-a), for every (universal
quantifier ∀) person, there exists some edible entity that was eaten.
In (7-b) this interpretation is possible too, as well as the wide-scope-
existential interpretation. In this second reading, which appears to be less
perspicuous than the other, for some edible item (existential quantifier
∃), every person ate it.
The observation that implicit indefinite objects can only take low scope
also holds with respect to other logic operators than quantifiers. For
instance, Gillon (2012, p. 316) provides example (8) about negation, where
the operator is shown to take obligatory wide scope over the sentence.

(8) Bill did not read. ¬∃x Rbx / # ∃x ¬Rbx

This means that the only possible interpretation of this sentence is that
Bill did not read anything (the first proposed truth condition of the
sentence), not that there exists something that Bill did not read (the
second truth condition, marked as improper).
Therefore, implicit indefinite objects have to be interpreted as weak indef-
inites (bare masses or plurals), not as the pronoun something. However,
it is clear that not anyweak indefinite can be interpreted as the omitted
object of a given verb. Which ones are the right ones? I am now going to
provide some answers based on the literature.

Prototypical objects Van Valin and LaPolla (1997, p. 122) coined the
term "inherent arguments" to describe the implicit indefinite objects
occurring with activity verbs, based on the idea that they denote a
facet of the meaning of the verb, characterizing the action itself rather
than a participant. I will devote some space to a detailed discussion of
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12: Note that while all referenced works
appeal to the notion of prototypical argu-
ment, not all of them phrase this idea
exactly in these terms. Some refer to
"implied arguments", "default interpre-
tations", "standard objects", "understood
object", and other labels in the same vein.

13: Apparently, for many people, espe-
cially the ones still liking their news to be
printed on paper, reading the news is a
leisurely activity to be specifically enjoyed
in the mornings while having breakfast.
This habit had to be even more common
in the late ’80s than today.

14: See also Mittwoch (2005, p. 20) on the
issue of circularity.

15: Following Fillmore (1986, pp. 96–97),
as discussed in Section 2.2.

intransitivization as a means to focus on the activity itself on Page 23.
Resorting once again to the concept of linguistic prototype, which is
indeed central in this discussion of transitivity (Section 2.1) and object
drop, much literature agrees on indefinite null objects being understood
as prototypical12 arguments of the verb (Bresnan 1978; Dvořák 2017b;
Levin 1993; Lorenzetti 2008; Melchin 2019; Mittwoch 2005; Næss 2007;
Quirk et al. 1985; Rice 1988). However, what is a prototypical object of a
given transitive verb? Rice (1988, p. 204) provides the examples in (9).

(9) a. John smokes (cigarettes / *Marlboros / *a pipe / *SMOKING
MATERIALS).

b. John drinks (alcohol / *gin / *water / *coffee / *LIQUIDS).
c. When he goes to Boston, John drives (a car / *a Toyota / *a

motorcycle / *A VEHICLE).
d. Each afternoon, John reads (a book / *Ulysses / *the newspa-

per / *PRINTED MATTER).

Examples in (9-a), (9-c), and (9-d) all appeal to our world knowledge, in
particular, to our knowledge of what is the most probable choice of the
average Joe (or John, in these examples). People usually smoke cigarettes
which do not have to be necessarily Marlboros, they drive differently
branded cars in their trips out of town, and they like to read generic
books in the afternoon13 .
As noted byNæss (2007, p. 125), however, example (9-b) poses a challenge
to the protypicality-enabled omission theory. The most typical liquid one
can drink is usually water, not alcohol. And if one was to understand
that the omitted substance is alcohol due to its very omission, would not
this argumentation become circular?14 The problem alcohol poses for
linguists (or better, for linguistic theory) can be explained from different
angles. I, for one, would appeal to the gricean maxim of relevance, in that
water is indeed the typical liquidwe drink, but it is somuch typical (being
necessary for good health and even life) that it would be actually weird to
mention water-drinking in casual conversation. No one would bat an eye
at John drinkingwater, so itwouldmake little sense to utter (9-b) implying
water-drinking. Indeed, we only refer to the act of drinking water when
it becomes relevant, for instance during hot summers (Remember to drink!)
or on a Sundaymorning (I am so glad I drank water before going to bed.). Thus,
since the only socially relevant, statistically likely, choice of a drink for
John in (9-b) is alcohol, that is what we intend as a prototypical, omissible
object for the verb to drink. This perspective is also echoed by Newman
and Rice (2006, p. 14), who ascribe the intransitive use of to drink to "the
prominence of alcohol consumption as a topic of discourse". Another
possible account is the one by Goldberg (2005a, pp. 21–28), where "taboo
verbs" are argued to facilitate object drop due to our culturally-induced
shame in mentioning that which is perceived as unmentionable in polite
society (such as bodily fluids or, in this case, enjoying alcoholic drinks).
Changing perspective, when presented with puzzling verb behavior such
as the one expressed in (9-b), Huddleston et al. (2002, pp. 303–305)15
needlessly assume that such verbs participate in two different patterns of
object-droppability, i.e., "specific category indefinites" (where the omitted
liquid would be interpreted as being of the alcoholic variety) and "normal
category indefinites" (where the omitted liquid would be interpreted
as being water). This account is flimsy at best, since it puts labels on
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16: More on Agent affectedness on Page
25.

a given state of affairs without actually providing an explanation for
this epiphenomenal dichotomy. Næss (2007, p. 141) offers a much more
compelling account, which is both descriptive and explanatory, where
the "specialized meanings" to drink and other ingestion verbs take get
explained by the affectedness of their Agent16 . In other words, omitting
the object highlights the effect the action described by the verb has on
the Agent (e.g., getting the Agent inebriated) by backgrounding the
effect it has on the Patient. The fact that intransitive to drink elicits a
drink-alcohol reading much more readily than intransitive to eat elicits
a eat-a-meal reading (also noted by Newman and Rice (2006, p. 14)) is
explained by the author (and again later in Næss (2011, p. 420)) with
reference to world knowledge and social norms. In particular, the case is
made that intoxication by means of alcohol not only has a direct effect
on the imbibing Agent (who takes on the drinking endeavor with this
precise goal), but it also has an indirect, sometimes unintended effect, i.e.,
making the Agent appear visibly drunk, and thus disrespectful of several
unwritten societal rules. This doubly-affected-Agent reading gives then
rise to the highly specialized reading of intransitive to drink.
Interestingly, Yasutake (1987, pp. 48–50) suggests a three-way graded
account of the different types of objects which can participate in implicit
indefinite object constructions where the prototypicality of the omitted
object is taken to be a rather flexible requirement for omission. In fact, the
omissibility-as-prototypicality accounts I presented so far in this Section
all made reference to the omitted object being somewhat "typical" of
the verb, so that less typical Patients of the same verb are less likely to
be omitted (or require quite the flight of fancy to be accounted for, as
seen in the proposal by Huddleston et al. (2002) about the verb to drink).
Yasutake’s perspective integrates the prototypicality intuition with other
accounts based on world knowledge, envisioning these three types of
implicit object:

I typical objects (e.g., to read);
I socially-understood objects (e.g., to drink, to shave, to drive);
I semantically unspecified objects of highly specialized activities

(e.g., to steal).

Most importantly, rather than saying that optionally transitive verbs can
omit their prototypical Patient, it would be best to say that object drop is
licensed by the recoverability of the prototypical Patient of a given sense
of a verb (Fillmore 1969, p. 100). This is evident, for instance, in example
(10) by Iten et al. (2005).

(10) I applied.

Indeed, as she argues, the verb in the example is acceptable when used
intransitively only if it is understood to refer to the job-seeking sense, not
to the bandage-application sense.

2.4 How many lexical entries?

In Section 2.3, I discussed some traditional views on the characteristics a
verb has to express in order to license implicit indefinite objects and I also
presented different views on the semantics of the omitted object. Now,
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another question arises about the nature of object-dropping verbs. When
a verb participates in the so-called "implicit object alternation", is the
transitive form of the verb actually distinct from the intransitive form in
the lexicon, or are they different syntactic expressions of a single lexical
entry? I will devote this Section to possible answers to this dilemma, to
use Gillon’s (2012) word. The issue of having two separate lexical entries
or just a single entry for the transitive and the intransitive use of these
verbs is not only relevant to develop a theoretical account of indefinite
object drop, but it also has considerable effects on applied uses of this
knowledge. For instance, McShane (2005, p. 118) observes that the choice
between one or two lexical entries would have direct consequences on
machine translation systems, in all cases when a transitive verb can be
used intransitively in the source language but not in the target language
(e.g., Russian mešat’ ’to bother’, which has to be translated in English as
’to get in the way’ when objectless). In these cases, one should either posit
two entries in the target language (and a rule to favor one or the other
according to the presence or absence of a direct object), or have a single
entry enriched with semantic information.

2.4.1 Two meanings, two verbs: the naive account

The problem of having a single verb exhibiting two syntactically different
behaviors (transitivity and intransitivity) was first identified by Jerry
Fodor and Janet Fodor (1980) and Dowty (1981), a reply to the former
paper. Both treat verbs allowing for implicit objects as ambiguous between
two different lexical entries, one transitive and one intransitive. This view
is shared by other traditional literature on the matter (Brisson 1994; Cote
1996; Fellbaum and Kegl 1989; Mittwoch 1982; Van Valin and LaPolla
1997) and by more recent accounts (Bourmayan and Recanati 2013; Pethõ
and Kardos 2006).
Such an interpretation is clean on the surface, as clear-cut binarisms often
are, but it does little to describe the complexity of reality —again, as
binarisms often do. In a broader theory of semantics, the problem of the
two uses of a single verb mirrors the well-known problem of deciding,
for instance, whether bank is a polysemous noun with two interpretations
("financial institution" and "river bank") orwhether it has two homonymic
interpretations. Say we go for the second, safer, account, since the only
factor keeping the two senses together, i.e., etymology, is not transparent
to native speakers of English nowadays. On the other hand, we would be
much more keen to ascribe a polysemous interpretation to the different
senses of the noun man, which depending on the context can be used to
mean "human being", "male human being", or "adult male human being".
Crucially, the different senses of man are all facets of the same entity,
while the different meanings of bank are not. Going back to the issue at
hand, i.e., the distinction between transitive and intransitive senses of
a given verb, it would indeed seem that these senses capture different
facets of the same action performed by the Agent, instead of being two
totally different meanings. This interpretation, fully consistent with the
hypothesis that transitivity is a prototype (refer back to Section 2.1), is
further explored in Section 2.4.2 with reference to relevant literature.
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17: The subject position is spec-TP in lan-
guages where the subject raises to spec-TP
after getting base-generated in spec-VP,
or spec-VP in languages where no raising
happens.

18: Let it be noted that here I am not re-
ferring to null-subject languages where
the omission of the subject is a kind of
Topic drop, not licensed by morphological
recoverability, such as Chinese.

2.4.2 One verb, two meanings: the state-of-the-art

account

As just argued at the end of Section 2.4.1, transitive verbs admitting
object drop are better interpreted as a single lexical entry with two
different meanings, rather than two separate entries in the lexicon (an
old-fashioned perspective that Lorenzetti (2008, p. 60) defines "coun-
terintuitive and inappropriate"). In particular, far from being a "lexical
quirk" of a restricted class of verbs, indefinite object drop appears to be
"a syntactic detransitivisation mechanism" used to express events which
do not embody the transitive prototype (Næss 2007, p. 134). Let us now
discuss this behavior in more detail.

The syntax of indefinite null objects A brief syntactic detour is in
order. While this dissertation is muchmore concerned with the effect that
semantics (and, to a lesser extent, pragmatics) has on indefinite object
drop, it is still important to take a position with respect to the syntactic
nature of the omitted object. Is it absent from the syntax, as many used
to argue (as seen at the beginning of this Section and later on Page 23)?
Or is there a syntactic slot available for the omitted object, even though
it has no phonological representation? Convincing arguments brought
forth by the literature on the matter, as shown throughout this Section,
make a strong case for the second hypothesis. For a discussion in favor of
the syntactic representation of implicit arguments, touching topics that
go beyond the scope of this dissertation, the interested reader can refer
to I. Landau (2010).
In syntactic theory, Roberge (2002) (further explored by Cummins and
Roberge (2004, 2005)) proposed an internal-argument equivalent of
what the Extended Projection Principle (EPP) (Chomsky 1982) is for
subjects, called "Transitivity Requirement". The EPP is the requirement
for a subject position in the clause17 , provided by Universal Grammar,
which then gets filled in by lexical material in non-pro-drop languages
(such as English) or by the empty category pro in pro-drop languages
(such as Italian). Likewise, the Transitivity Requirement posits a direct
object position in the clause, provided by Universal Grammar too, which
accounts for implicit objects just like EPP accounts for null subjects.
The only difference between the two is that, as noted by Cummins and
Roberge (2004), "recoverability for the EPP is morphologically based,
as is evident in null-subject languages, while recoverability involving
the TR may also be semantically and pragmatically based". Null-subject
languages18 have "morphological recoverability" for their null subjects
in that the required information is stored in verb morphology, as shown
in my examples in (11) relative to Italian.

(11) a. Corr-o.
run.1.SG.PRS
’I run.’

b. Corr-iamo.
run.1.PL.PRS
’We run.’

Semantic and pragmatic recoverability of the implicit object licensed by
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19: Refer to Section 3.1.1.
20: Refer to Section 2.3.2.

the Transitivity Requirement has been partially shown in Section 2.3.2
and will be further discussed in the rest of this Section.

Focus on the activity Many authors (Ahringberg 2015; Fillmore 1986;
García-Velasco and Muñoz 2002; Goldberg 2005a; Levin 1993; D. Liu
2008; Yasutake 1987) argue that the implicit indefinite object construction
is used to focus on the activity itself, "downgrading the referential status
of the object" (García-Velasco and Muñoz 2002, pp. 7–8). I provided an
example of this on Page 19, where the verb to drink used intransitively
was shown to refer to the habit of drinking alcoholic beverages. Thus, the
focus of such utterances is not on the actual drink the subject is imbibing,
but rather on the activity itself.
The word "focus" is not used idly here. Indeed the distinction between
topic (the known, background information) and focus (the new, fore-
ground information), central in pragmatic and discourse-oriented ac-
counts of human language, also applies to the problem at hand. As
argued by Lorenzetti (2008, p. 66), given that most sentences require at
least one focus, and that the focus is by its very nature new, pragmatically
non-recoverable information, it stands to reason that omitted objects
(which are recoverable19 and prototypical20 , hence, known) cannot be
the focus. Thus, the focus in such utterances has to be on the activity
itself, as in her examples in (12).

(12) a. I thought you said your dog doesn’t bite ∅!
b. Religion integrates ∅ and unifies ∅.

Goldberg (2005a) formalized this intuition via her Principle of Omission
under LowDiscourse Prominence, which states that the Patient argument
of a transitive verb is possible when it is "de-emphasized/unprofiled in
the discourse" (i.e., neither topical nor focal) and when the action, on the
other hand, is "particularly emphasised". This shift in meaning, granted
by the omission of the direct object, has been shown (Greene and Resnik
2009, p. 507) to trigger a reduced sentiment response in native speakers
presented with pairs of sentences like the one in (13).

(13) a. At the same time,we should never ignore the risks of allowing
the inmate to kill again.

b. At the same time,we should never ignore the risks of allowing
the inmate to kill someone again.

Some authors (Groefsema 1995; Hall 2009; Iten et al. 2005; Recanati 2002;
D. Wilson and Sperber 2000) even took advantage of this focus-on-the-
activity interpretation to state that the omitted object is absent in the
syntax just as it is absent phonologically, being instead pragmatically
provided. Such an account is tempting and not inconsistent with Gold-
berg’s omission principle, but (as I am going to argue right away) it is
not convincing in the light of further linguistic evidence.

Indefinite object drop as noun incorporation Not only do (indefinite)
object-dropping transitive verbs describe activities, they specifically de-
scribe "conventional, name-worthy, institutionalized, habitual activities"
(Dvořák 2017b, p. 119). As observed by Bourmayan and Recanati (2013),
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21: Noun incorporation is found in several
polysynthetic languages, but it is not a req-
uisite for polysynthesis, just as polysynthe-
sis is not a requisite for noun incorporation
(Mithun 2009).

Martí (2010, 2015), and Yasutake (1987), this is exactly the case of verbs
having undergone noun incorporation21 , a linguistic process "tradition-
ally understood as the compounding of a noun stem with a verb stem to
form a new verb stem" (Mithun 2009, p. 5). Syntactically, this can be seen
as a kind of head-to-head movement, as depicted in Figure 2.1 (taken
from Carnie (2012, p. 495), a simplified account of the account provided
by Baker (1988)).

Figure 2.1: Portion of syntax tree illustrat-
ing the head-to-head movement involved
in noun incorporation, from Carnie (2012,
p. 495).
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Without bringing systematically noun-incorporating languages into the
discussion, such as the ones from the Iroquoian family (Mithun 2009),
Frisian, or West Greenlandic (Martí 2015), it is possible to find such
behavior in now-lexicalized object-verb compounds in English too. I
illustrate the case of to babysit (also valid for to birdwatch, to fingerprint,
and other such compounds) in Figure 2.2.

Figure 2.2: Portion of syntax tree illustrat-
ing the object-verb compound to babysit in
English as a result of noun incorporation.
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In Martí’s (2015) account, then, the only difference between indefinite
null objects and incorporated nouns such as baby in to babysitwould be
that the former are phonologically null, while the latter are not. Noun
incorporation gives rise to several effects, which Martí (2015, pp. 455–
456) reports based on evidence from West Greenlandic (an ergative
language):

I incorporated nounsmust be bare, i.e., with no preceding article/de-
terminer (just like indefinite null objects were shown to be "weak
indefinites" in Section 2.3.2);

I the subject of a noun-incorporating verb is marked with absolutive
case like the subjects of intransitive (unergative) verbs and the
objects of transitive verbs, while the subjects of transitive verbs are
marked with ergative case (mirroring the intransitive behavior of
object-dropping transitive verbs);

I incorporated nouns always precede the verb in the linear word
order, regardless of the position a full-fledged direct object would
take in the sentence;
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22: In particular, on a competitive perspec-
tive about the activity, which is typical of
commercials.

23: Refer back to Table 2.1 and further
considerations in Section 2.1.

24: Refer back to Section 2.3.1.

25: Ignoring useswhere the subject is non-
Agentive such as The ball broke the window
and anticausative uses such as The window
broke.

I incorporatednouns are interpreted indefinitely andnon-specifically
(just like indefinite null objects);

I incorporated nouns take narrow scope with respect to other op-
erators in the sentence (as argued about indefinite null objects in
Section 2.3.2);

I verbs undergoing noun incorporation usually refer to "name-
worthy, typical activities" (like indefinite null objects, as shown on
Page 23);

I verbs undergoing noun incorporation tend to have "convention-
alized meanings", as noted before on Page 19 relatively to the
imbibe-alcohol conventionalized meaning of the verb to drink used
intransitively.

Martí (2015, pp. 461–463) then proceeds to test the hypothesis that verbs
allowing indefinite object drop and verbs allowing noun incorpora-
tion share common properties with evidence from Frisian, a Germanic
language having both indefinite null objects and noun incorporation.
Her analysis demonstrates that transitive-made-intransitive verbs and
incorporated-into verbs indeed belong to the same class. A crucial prop-
erty both types of verbs share is, for instance, that only verbs selecting for
a Patient object and having a volitional subject can participate in these
constructions (making it only possible for verbs such as to notice, to hate,
to know in English to participate in definite, not indefinite, object drop).
Purely pragmatic accounts of implicit indefinite objects, as revealed on
Page 23, fail to take into account the cluster of properties shared by
noun-incorporating and object-dropping verbs alike. On a side note,
Mittwoch (2005, p. 249) comments on a construction sharing similar
properties with noun incorporation, i.e., the out-verb formation (e.g., I
don’t think they can outbuild us), which is a productive process where the
original object gets omitted to put the focus on the activity22 and the
"resulting form selects for an object that belongs to the same class as
the subject" (typical of low-transitivity utterances, as per Hopper and
Thompson (1980)).

Affected Agents, effected Patients I will now tackle an aspect of indef-
inite objecthood originating directly from the account of transitivity as
a prototype concept by Hopper and Thompson (1980) and later litera-
ture23 , i.e., the need for the subject and the object of transitive sentences
to be maximally distinct in their semantic behavior. This requirement
was formalized by Næss (2007, p. 30) in the Maximally Distinguished
Arguments Hypothesis. This observation led some authors24 to posit
change-of-state verbs such as to break as obligatorily transitive, since they
feature25 a volitional, unaffected Agent and a non-volitional, affected
Patient. As argued time and again in this Chapter, indefinite object drop
is far from being prototypical behavior for transitive verbs. Under this
lens, then, it would make sense to find that indefinite null objects are
more common with verbs having affected Agents (i.e., Agents being the
endpoint of the event) and/or effected Patients (i.e., Patients brought into
existence by the event the verb refers to). Such an analysis is discussed in
detail in Næss (2007).
Let us consider affected Agents first. Tenny (1994, p. 158) calls them "mea-
suring arguments", in that they delimit the event "by undergoing a change
of state that marks the temporal end of the event". For instance, the event
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26: Such an account was first offered, in
nuce, in Haspelmath (1994), Nedjalkov
and Jaxontov (1988), Starosta (1978), and
Wierzbicka (1982).

27: Used in ergative languages to con-
vey certain aspectual and modal nuances.
They are called "antipassives" because,
much like in passive sentences the object
of the active sentence becomes the subject
and the subject of the active sentence is
deleted, in antipassive constructions the
object is (usually) deleted and the subject
changes case from ergative to absolutive
case.
28: More on selectional restrictions and
object recoverability in Section 3.1.1.

29: A language of the Bantu family, spo-
ken in western Uganda.

described by John atewould be delimited by the affectedness of the Agent
(in this case, the feeling of fullness), rather than by the affectedness of
the unmentioned Patient. On the opposite, if one wanted to focus on the
affectedness of the Patient, they would then have to resort to a transitive
use of the verb to eat (Næss 2007, p. 80). An affected-Agent interpretation
of intransitive to eat26 , which may or may not convince the reader yet by
means of this example in English, becomes quite more persuasive in the
account by Næss (2007, pp. 61–63) of the same verb in Yucatec, a Mayan
language spoken in the Yucatán Peninsula. In this language, due to its
Agent being affected, to eat patterns aspectually and morphologically
with change-of-state verbs, not with activity verbs (as one would expect).
Crosslinguistically (Næss 2007, p. 126), ingestive verbs (to eat, to drink,
but also to learn) consistently show characteristics typically belonging
to intransitive verbs (Amberber 1996, 2009), leading Marantz (1981) and
subsequent decades of literature on indefinite object drop to consider
them "class representatives" of the typical behavior of verbs allowing
for indefinite object drop. Taking the affected-Agent interpretation to
the extreme, in some languages (such as Korean and Turkish) to eat is
even used as a grammaticalized marker of Agent affectedness, e.g., as an
auxiliary, as a light verb, in constructions where it expresses undergoing
or adversativity (Næss 2007, p. 75), and in antipassive constructions27
(Næss 2011, p. 414). Nicolas (2019) offers an interesting account of the
features null objects in English share with antipassive constructions.
Moreover, an affected-Agent account can be easily employed to explain
linguistic behavior that would otherwise remain unmotivated, such as
the resistance of the verb to lock to object drop as opposed to the ease one
finds in using to eatwithout an overt object, as noted by Pethõ and Kardos
(2006, p. 30). They argue that the opposite behavior of these two verbs
with respect to indefinite object drop "does not become clear", on the
basis of their selection restrictions28 having comparable extent (i.e., the
objects of to eat are edible items, the objects of to lock are items provided
with a lock). The reason for this difference, however, becomes quite clear
when one considers that the subject of to eat is an affected Agent, while
this does not hold true for to lock. However, it should be noted that while
this analysis works, allegedly, for English, it is not universally valid for
other languages. For instance, chiudere (a chiave), the Italian equivalent of
English to lock, can also be used intransitively, at least in spoken language
(e.g., Hai chiuso? ’Did you lock?’, asked to someone leaving their house).
Isingoma (2020) observes that object drop is also possible with -siba, the
equivalent of English to lock in Rutooro29 . Thus, Agent affectedness is a
relevant facilitator of object drop, but its role has to be put in perspective
(refer also to Section 3.1.2 for more considerations on this).
It is also important to note that while Agent affectedness is inherent
to the semantics of some verbs (such as ingestion verbs), it may also
be activated by verb-external elements of a clause. Let us consider the
example sentence John murdered for the money (Næss 2007, p. 136). In this
case, the affected-Agent interpretation is fostered by the purpose clause
for the money, since the Agent’s motive for the homicide is a direct gain, i.e.,
something that positively affects the Agent. Finally, the affected-Agent
account can also explain constructions of the type have a drink, have a lick,
have a bite (Wierzbicka 1982, pp. 758, 771). The author argues that in such
constructions, have has a detransitivizing function in that it backgrounds
the object while focusing on the Agent. Not only that, but also, have a
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30: I will come back to the role of
(im)perfectivity as a factor determining
indefinite object drop in Section 3.2.2.

[verb] events deviate from the transitive prototype because their Agent is
affected by it (typically, by enjoying the activity the verb refers to), while
the Patient is minimally affected.
Let us now discuss the other kind of argument deviating from the tran-
sitive prototype, i.e., effected Patients. These are non-affected objects
that come into existence thanks to the very action described by the verb,
and only if this action is brought to completion, e.g., the letter in John
is writing a letter or the cake in John is baking a cake. Such constructions
tend to feature indefinite null objects crosslinguistically and to have
unaffected Agents, making it necessary to provide a different analysis
than before in this Section (Næss 2007, pp. 127–128). What affected-Agent
and effected-Patient constructions have in common is that they both
show low semantic distinctness between Agent and Patient (making
them the optimal environment for felicitous indefinite object drop, based
on Hopper and Thompson (1980)), and they both largely depend on
the semantics of the verb itself. As Næss (2007, p. 127) and Næss (2011,
p. 421) observe, the low-distinctness of effected Patients is so embedded
in the verb semantics that the very intransitive use of an effected-Patient
verb evokes the non-referentiality of the object. This is most evident
in imperfective contexts30 (e.g., John was writing), where the effected
Patient is not presented as fully effected yet, and thus it is even less
prominent in the discourse. On the contrary, perfective contexts tend to
block indefinite object drop with effected-Patient verbs (e.g., ? John had
written), while the same does not usually hold for affected-Agent verbs
(e.g., John had eaten). Crucially, an effected-Patient account can be used
to explain why, as first observed by Fillmore (1986, p. 96), intransitive to
bake in English (e.g., I spent the afternoon baking) can only be understood
to refer to the act of baking "bread or pastries, but not potatoes or ham".
Næss (2007, p. 135) easily explains this linguistic fact by observing that
the bread-or-pastries interpretation features an effected Patient, while the
potatoes-or-ham interpretation features an affected Patient, which makes
the verb prototypically transitive and, thus, resistant to indefinite object
drop. On the same note, intransitive to paint (e.g.,He paints) is interpreted
to refer to the act or habit of painting pictures, not house walls.

2.5 A working definition of "indefinite object

drop"

This dissertation is about indefinite null objects, whose nature I discussed
throughout this Chapterwith reference to traditional and recent literature
alike. It is time to end this Chapter with some more detail on what this
thesis is going to focus on, and also on what is going to be ignored in my
experimental account of indefinite object drop.
As I mentioned in Section 2.2.2, I assume there is a distinction between
indefinite object drop, motivated by linguistic factors (see Chapter 3 and
Chapter 6) of varying nature, and other kinds of object drop, such as
definite null objects depending on Topic drop, genre-based null objects,
and implicit objects depending on extra-linguistic context. This choice is
motivated by lexical, semantic, and pragmatic accounts of the indefinite
object drop discussed in this Chapter. Crucially, while I assume that verbs
participating in the indefinite object drop construction show two surface
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sentence structures while being single lexical entries (Section 2.4), I will
not take a stance with respect to the problem of whether indefinite and
definite object drop form part of a continuum or are two discrete, binary
phenomena (Section 2.2). Indeed, one could interpret the distinction
between the different kinds of object drop as stemming from a situation
like the one in Figure 2.3, where virtually any verb can participate in
object-dropping constructions, but in different ways depending on the
underlying factor.

Figure 2.3:Aconcentric viewof the factors
determining the possible continuum be-
tween definite and indefinite object drop.
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Let us interpret the examples in (14) in the light of Figure 2.3. In (14-a),
the referent of the omitted object (gas) is supplied by pragmatics —if
one wanted to echo Glass (2020), it is recoverable because in the sub-
community of car-drivers it is customary to say cars "drink" to refer
to them burning fuel. In (14-b), the definite null object is immediately
recoverable from the linguistic context provided in the sentence, and no
additional extra-linguistic context is needed to interpret this utterance.
Instead, the indefinite null object in (14-c) is interpretable with no context
whatsoever, given that the semantics of the verb (and of the Agent, as
argued on Page 25) are sufficient for its recoverability.

(14) a. It drinks ∅ a lot!
(in the social context of someone speaking about a car)

b. # My milk has been opened, who drank ∅?
c. He drinks ∅.

One could, naturally, have qualms with respect to the full grammaticality
of (14-b), since English, after all, is not typically a language allowing
definite null objects outside genre-specific environments. Moreover, one
may want to keep verb-specific semantic affairs separate from extra-
and intra-linguistic contextual information. In this case, the concentric,
continuous view depicted in Figure 2.3 would not correspond anymore
to the theory, and one would have to adopt a strictly binary definite-or-
indefinite perspective. Such an account easily handles cases where the
same verb can appear in indefinite object drop constructionswhen proper
situational context is provided, but not in zero-context environments, as
in (15).

(15) a. Do you even lift ∅, bro? (Glass 2020, p. 9)
(common among people training for strength in gyms)

b. *John had lifted ∅.
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What is important, here, is that the same factors acting on no-context
indefinite null objects are also active in context-rich scenarios, regardless
of the continuous or binary view one adopts. What matters is that
additional context (such as the one granted by a sub-genre) makes it
possible for a verb to license implicit indefinite objects more freely than
in no-context utterances. Thus, by studying the factors determining
indefinite object drop in no-context utterances, I am still providing useful
information to understand context-depending object drops, although
without committing to a specific interpretation of the distinction between
implicit indefinite objects and other null objects.
To sum up, my stance is that:

I it is possible to characterize indefinite null objects, whether they
form part of a continuum having definite null objects at the other
end or not (e.g., in a binary account of this distinction), as discussed
in Section 2.2;

I indefinite object drop is possible both with change-of-state verbs
and with incremental-theme verbs (refer to Section 2.3.1), to dif-
ferent extent, and the understood omitted object is not something
but the most prototypical Patient for a given verb sense in a given
context (refer to Section 2.3.2);

I rather than positing two separate lexical entries for the overt-object
and null-object uses of a transitive verb allowing indefinite object
drop, a better account would have a single entry in the lexicon
for the verb, which would then admit a null object under specific
circumstances (refer to Section 2.4);

I the same semantic and aspectual factors allowing for indefinite
object drop in no-context utterances are active in context-rich
utterances, where context can be provided by linguistic means or
via community-specific world knowledge (refer to Section 2.5).

I will explore themain semantic, aspectual, and pragmatic factors playing
a role in indefinite object drop in Chapter 3. Clearly, all these perspectives
have to be interpreted in the light of unavoidable lexical idiosyncrasies,
such as the difference (noted on Page 26) between English to lock, blocking
object drop, and its equivalents in Italian and Rutooro, allowing object
drop. In order to compare my models of indefinite object drop in English
and in Italian, I will design my experiments in such a way as to minimize
such semantic differences between my target verbs in English and their
Italian counterparts (see Chapter 7).
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In Chapter 2 (Indefinite object drop) I presented indefinite object drop as a
marked construction deviating from the transitive prototype. Indefinite
object drop has been argued to be binarily distinct from definite object
drop, to be possible with some or all transitive verbs, to imply an unsaid
something or a prototypical object different for each verb, to make the
verbs participating in this construction have an additional, intransitive
entry in the lexicon or just the transitive one. Several answers were
proposed to these conundrums in the literature, and I provided my own
perspective.
In this Chapter, I am going to focus on the main intra-linguistic (semantic,
aspectual, and pragmatic) factors allowing a transitive verb to participate
in the indefinite object drop construction, based on literature on this
topic. I will return to the subject of recoverability, manner specification,
telicity, perfectivity, and iterativity in Chapter 6 (Linguistic factors used
as predictors), where I will define them as predictors of indefinite object
drop in my Stochastic Optimality Theoretic model.

3.1 Semantic factors

3.1.1 Recoverability

An intuitive notion of recoverability As observed several times in
Chapter 2, recoverability is the sine qua non of object omission. Cote
(1996) even went as far as to identify it as "the only absolute constraint on
null arguments". Intuitively, this notion can be used to tell apart definite
implicit objects (whose meaning is recoverable from context, be it extra-
or intra-linguistic) and implicit indefinite objects (whose meaning is
recoverable from the semantics of the verb itself). Even authors who
cautiously (Olsen and Resnik 1997; Resnik 1993, 1996) or openly (Glass
2013, 2020, 2022) reject a distinction between definite and indefinite object
drop still maintain a certain notion of recoverability as a fundamental
requirement for object drop. Let us discuss this in some more detail.
Decades of literature on the matter teem with pre-theoretical definitions
of object recoverability. The oldest is in Jespersen (1927, p. 321), where the
author argues that "the omission of an obvious object probably produces
more intransitive uses of transitive verbs than anything else". Later on,
U. Ohlander (1943, p. 105) observed that object-less utterances "may
appear complete enough" by virtue of the fact that "the element to be
understood or supplied is so self-evident that the gap is mentally filled in
by the audience more or less unreflectingly". Like many others, Ohlander
makes reference to the notion of recoverability without using this exact
wording. Similarly, Hickman, J. Taylor, and Raskin (2016) resort to the
idea of "conceptual defaultness", i.e., the property of unmentioned direct
objects whose omission does not depend on an informational failure on
the part of the speaker/writer —on the contrary, defaults are omitted to
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1: Unless, of course, the verb takes a spe-
cialized meaning in a specific sub-genre,
e.g., to eat in a game of chess would mean
to capture enemy pawns.

comply with the Gricean maxim of quantity, since their very mention
"would be unnecessary and, perhaps, awkward" (Hickman, J. Taylor, and
Raskin 2016, p. 516).
Interestingly, recoverability appears to be such an intuitive notion as
to become a major determinant of argument omission (not limited to
indefinite object drop) in the early stage of grammar acquisition crosslin-
guistically, even in context and languages where adult grammar would
normally prohibit it (Allen 2000; Ingham 1993; Medina 2007; O’Grady,
Yamashita, and Cho 2008; Pérez-Leroux, Pirvulescu, and Roberge 2011,
2018; Pérez-Leroux, Pirvulescu, Roberge, and Castilla 2013; Rasetti 2003;
Ratitamkul, Goldberg, and Fisher 2004; Sopata 2016). Young children are
shown to omit objects (and other arguments) of verbs they are exposed
to, both in transitive and intransitive utterances, if extra-linguistic context
makes them sufficiently recoverable.

Between lexical andcontextual recoverability InKardos’s (2010)words,
omitted objects are recoverable "either through lexical stereotypes or
based on the context" (Kardos 2010, p. 7). In a sense, it is not even nec-
essary to postulate a binary distinction between the two facilitators of
recoverability, since "lexical stereotypes" (i.e., the selectional preferences
of a verb) descend from world knowledge, situational context is where
meaningful conversations happen, and narrower context enables more
object omissions without contradicting world knowledge (more on this
in Chapter 2, and in Glass (2013, 2020, 2022), where recoverability is
intended as a matter of degree). A prime example of this is (1), taken by
Bergh and S. Ohlander (2016, p. 24), whose full interpretation depends
on additional context. Indeed, this sentence in isolation has no unique
interpretation. What did they play beautifully? Was it an instrument
or a game? And what kind, exactly? However, while context would
make it possible to know the referent of this implicit indefinite object,
the semantics of the verb (in particular, its selectional restrictions) still
provide us relevant information without the need for additional context.
Indeed, we know that they played either a game, or a musical instrument,
or a role in a theater piece. This would not be possible, for instance, with
a selectionally un-restricted (or, better, very loosely restricted) verb such
as to make.

(1) They played beautifully.

This also holds true for verbs with much stricter selectional preferences
than to play, e.g., the verb to eat, as discussed in Chapter 2. As noted by
Cote (1996, p. 149) among others, intransitive to eat tends to refer to a meal
(which is the prototypical item humans eat), but it does not have to. In
context-rich utterances, the actual referent may be different, depending
on "the underlying context and intentional structure of the discourse
structure at the time of utterance". Crucially, context maymake it obvious
that the omitted Patient is some specific kind of edible item (e.g., pasta,
hamburgers, or even something as extravagant as Hawaiian pizza), but it
cannot make it deviate from the basic selectional preferences of the verb1
—the omitted Patient has to be something edible.
Semantically-licensed recoverability also interacts with world knowledge,
specifically with societal norms, in Goldberg (2005a). In this case, the
author argues that politeness is a driving factor in the omission of direct
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2: An in-depth discussion of such verb
pairs will be tackled in Section 3.1.3.

objects occurring with verbs of bodily emission, since they are very im-
ageable (hence, recoverable), but also very taboo in usual social contexts.
On the other hand, it would be easy to imagine that in contexts where
such verbs are not taboo (e.g., in medical or adult-only literature, as a
future corpus study could ascertain) the main driver of object omission
would be contextual inferability, rather than misguided concerns for
politeness. Either way, context and world knowledge (about the verb
itself, but also about proper customs) comply with verbal semantics.
Consistentlywith all thepreviousobservations on recoverability,Mittwoch
(2005) and Glass (2013) also observe that the referent of implicit indefinite
objects corresponds to the literal meaning of the verb, rather than to
metaphorical or idiomatic meanings. For instance, intransitive to read
refers to "written or printed material rather than, say, the stars or cof-
fee grounds" (Mittwoch 2005, p. 2). Likewise, when a verb has strict
selectional preferences (e.g., to eat selects for edible items) and one of
its near-synonyms has broader preferences2 (e.g., to devour selects for
edibles, but also for metaphorical items such as books), direct objects
are much more likely to be dropped with the former than with the latter
(Glass 2013, p. 5). Clearly, this mechanism is in place to maximize recov-
erability, since the literal selectional preferences of a verb are known and
predictable (based on lexical semantics and world knowledge), while its
metaphorical or idiomatic behavior is largely arbitrary and unpredictable.
More in general, the more an object is semantically dependent from a
verb, the more likely it is to be omitted (Rice 1988, pp. 203–204).

Semantic selectivity as a proxy to recoverability Let us now look in
more detail into semantic selectivity as the main verb-internal, context-
independent factor allowing for object recoverability. So far in this Section,
Imade the case that knowing the specific type of objects a verb favors in its
selectional preferences is the first step towards object recoverability and,
consequently, felicitous object omission. World knowledge and context
shape the way we process object-less transitive verbs when accessing
their selectional preferences. However, as hinted before, there is a close
correlation between indefinite object drop and the breadth of a given
verb’s selectional preferences, regardless of the actual items or family of
items it tends to occur with (García-Velasco and Muñoz 2002; Glass 2020;
D. Liu 2008; Maouene, Laakso, and L. B. Smith 2011; Medina 2007; Olsen
and Resnik 1997; Resnik 1993, 1996). The intuition behind the use of a
verb’s selectional preferences as a means to gauge the recoverability of
its objects stems from the observation that implicit indefinite objects "are
clearly understood because they are inferred from a very narrow, if not
exclusive, range of possibilities" (García-Velasco and Muñoz 2002, p. 4).
This is the reason why native speakers of English are more likely to find
indefinite object drop grammatical with to read than with to know, since
there are way fewer readable than knowable things in our lives (D. Liu
2008, p. 302).
Resnik (1993, 1996) was the first to provide a more data-grounded
definition of recoverability, by means of a computational model of a
verb’s selectional preferences. In particular, his Selectional Preference
Strength taxonomy-based measure is shown to be inversely proportional
to the semantic narrowness of a verb’s selectional preferences, so that a
verb will receive a higher score if its direct objects are semantically similar
(e.g., to eat, to read), and a lower score if they are semantically different
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3: This is less true for semantic similarity
measures based on behavioral judgments,
such as Object Similarity and Behavioral
PISA, but still not completely off the mark.
Please refer to Section 6.1 for a full account
of such measures.

4: However, some verbs high in semantic
selectivity fail to license indefinite object
drop. Resnik explains this apparent failure
of his measure with reference to the aspec-
tual properties of such verbs. I will come
back to this in Section 3.2 and Chapter 6.

5: Refer back to Table 2.1.

(e.g., to make, to know). I will present the mathematical details of Resnik’s
measure, discuss the implications of such an approach, and propose my
own distributional semantics-based alternatives in Section 6.1, where
I expand upon both my Preference In Selection of Arguments (PISA)
computational measure presented in Cappelli and Lenci (2020) and on
my behavioral variant of Computational PISA, inspired by Medina’s
(2007) Object Similarity measure. An important implementation-related
aspect to note here, common to all these measures of semantic selectivity
used as proxies to object recoverability (Resnik’s SPS, Medina’s OS, my
own PISAs), is that recoverability is modeled as being gradient, and
these models capture the semantic narrowness/breadth of the semantic
categories3 the potential direct objects of a verb belong to, rather than
focusing on the specific objects themselves.
Most importantly, with his computational experiment Resnik (1993,
p. 88) could conclude that recoverability, as quantified via gradient
semantic selectivity, is a necessary (albeit insufficient) condition for object
omission. This conclusion, consistent with pre-theoretical intuitions
about recoverability and previous theory-informed, non-experimental
statements about the role of selectional preferences in determining object
recoverability, stems from the observation that object-less transitive verbs
never receive low semantic selectivity scores4 in Resnik’s experiment.

3.1.2 Agent affectedness

Back on Page 25, I argued with plenty of references to relevant literature
(first and foremost, Næss (2007)) that verbs whose Agent is in some
ways affected by the action (e.g., to eat, to learn) described by the verb
tend to be more likely to participate in the implicit indefinite object
construction than unaffected-Agent transitive verbs (e.g., to kill, to break).
This is a direct consequence of the need for the arguments of prototypical
transitive verbs to be maximally distinct from a semantic point of view,
captured in Hopper and Thompson’s (1980) parameters H (agency) and I
(affectedness of the object)5 , and later on in Næss’s (2007) Maximally
DistinguishedArgumentsHypothesis.Malchukov (2006, p. 335) captures
the same intuition in his Relevance Principle, stating that Hopper and
Thompson’s (1980) transitivity parameters have to be marked on the
relevant constituent (e.g., volitionality on the Agent, affectedness on the
Patient) in prototypical transitive clauses.
I will not go again over the affected-Agent account of object drop, since I
already discussed it in Chapter 2. For the purposes of the review of the
main factors facilitating indefinite object drop provided in this Chapter,
I will just mention that Agent affectedness can manifest in two ways.
One is inherent to the semantics of the verb, as it happens with ingestion
verbs such as to eat, to drink, and, in a sense, to learn. The other is instead
context-dependent, as in (2), where the verb to murder gets an affected-
Agent interpretation and thus participates in felicitous object drop due
to the purpose clause for the money.

(2) John murdered for the money. (Næss 2007, p. 136)

It is important to note, as seen before in this Chapter and Chapter 2,
that the context enables verb behavior that is already possible, virtually,
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6: Abakedgoodwhich,wewill remember
from Chapter 2, is much more likely to be
bread or some pastry rather than rotisserie
chicken.

7: For an extensive discussion on the con-
cept of "manner", touching several aspects
that are beyond the scope of this disserta-
tion, refer to Stosic (2019, 2020).

8: The concept of "manner", here dis-
cussed in relation to transitive verbs, is
also central in studies about motion verbs
(Beavers, Levin, and Wei Tham 2010; Cen-
namo and Lenci 2019; Iwata 2002).

thanks to the semantics of the verb itself. After all, does amurder not affect
the murderer even without mention of the cause? Stating it explicitly
puts the focus on the motive, putting in the background both the Patient
(which was already backgrounded, due to being unmentioned) and the
murdering activity itself (which would be the focus of cause-less John
murdered). Crucially, I would like to point out that it is not possible to
use purpose clauses to induce an affected-Agent reading on object-less
transitive verbs lacking this possibility in their semantics, e.g., the verb to
build in (3).

(3) *John built for the money.

Indeed, (3) would only be considered grammatically acceptable provided
it is inserted in a larger context (just like plain *John built). However,
one could object to this account of the verb to build making reference
to the effected-Patient account I discussed in Chapter 2 together with
the affected-Agent account —the object of to build comes into existence
via the act itself of building it, unlike the Patient of to murder (which
exists before the murder, and ceases to do so due to it). Why does the
verb to build not allow for indefinite object drop, even though it is a
handbook effected-Patient verb just like to bake? Based on Goldberg (2001,
p. 512) and Næss (2007, p. 139), to bake and to build are actually more
different than it would seem at first glance, since verbs like the latter
(e.g., to break) refer to events whose interpretation strictly depends on
the Patient itself. In other words, while it is possible to imagine a baking
event without having a precise baked good6 in mind, it is impossible
to picture a breaking or building event without having a precise broken
or built object in mind. Without going into idiom territory, where one
could "break a bank note" to get change or "build one’s hope", it is clear
that the act of breaking a glass is quite different from the act of breaking
a leg, just as building a sand castle is quite different from building an
airplane. Thus, these examples go to show that recoverability (introduced
in Section 3.1.1) is the preminent factor in determining object drop, and
neither Agent affectedness nor Patient effectedness cannot overpower
it.

3.1.3 Manner specification

Introduction Manner specification is a tricky semantic predictor of
indefinite object drop to define, due to the different interpretations the
concept of "manner" received7 from different authors. This word is used,
fundamentally, in two different ways:

I to refer to "semantically marked" counterparts of "semantically
neutral" verbs, e.g., to devour, to nibblewith respect to to eat (Fellbaum
and Kegl 1989; Næss 2007; Rice 1988);

I in contrast with "result", to separate "manner" activity verbs such
as to sweep from "result" causative verbs such as to break8 (Beavers
2013; Beavers and Koontz-Garboden 2012, 2017; Levin and Hovav
2008; Melchin 2019; Rappaport Hovav and Levin 1998, 2005, 2010).

Keeping these two senses apart is important to avoid drawing forced
conclusions about the nature of verbs exhibiting "manner" components
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9: This analysis would have manner spec-
ification be collinear, or at least highly
correlated, with telicity as Olsen (1997
[2014]) (whose account is used in the exper-
imental setting byMedina (2007), which is
also mine) intends it. In Section 6.5 I will
demonstrate that this is not the case at all.

10: Melchin (2019, p. 52) actually argues
that "dynamic verbs" such as to clean are
specified for neither manner nor result.
However, delving into this debate would
not bring my own argumentation further.

in their meanings. García-Velasco and Muñoz (2002, p. 7) run exactly
into this problem when they argue that "manner-of-ingesting verbs may
be the exception to the rule", namely, the fact that manner-of-action
verbs allow for object drop in Rappaport Hovav and Levin (1998) while
result verbs do not. Indeed, they acknowledge that "both Rice (1988)
and Fellbaum and Kegl (1989) suggest that the presence of a manner
component in manner-of-eating verbs accounts for the impossibility of
omitting the object", but they fail to recognize that these authors are
using "manner" in a very different sense from Rappaport Hovav and
Levin. In a way, these two senses are so different to become almost
opposites, given that manner-specified verbs being semantically marked
counterparts of other verbs would be the least manner-y of all in the
account interpreting "manner" as opposed to "result", since they also
encode a result component (as I will show in this Section).
In this thesis, as I will also argue in Section 6.5, I am only interested
in the first sense of the word "manner". However, since the two senses
overlap in significant ways, despite their fundamental difference, I will
also comment now the second sense in some detail.

"Manner" as opposed to "result" With respect to indefinite object drop,
Levin and Hovav (2008) and Rappaport Hovav and Levin (1998, 2005,
2010) argue that verbs expressing manner in their meaning, such as to
eat, are much more likely to allow for object drop than verbs expressing
result, such as to devour. In particular, to devour is considered a result verb
because it entails complete consumption of the Patient9 by the Agent,
unlike to eat, at least in an unmarked, uninterrupted scenario (Melchin
2019; Piñón 2008; Smollett 2005).
This idea, which Goldberg (2001) and Onozuka (2007) oppose on the
basis of the aforementioned Principle of Omission under Low Discourse
Prominence, is famously exemplified by Rappaport Hovav and Levin
(1998) with the examples in (4). The rationale behind this account is that
result verbs specify scalar change (see (4-b)), while manner verbs specify
non-scalar change (see (4-a)). Crucially, the entity changing along the
scale specified by result verbs (i.e., the Patient object) is argued to be
ungrammatical to omit, giving rise to a test for result-lexicalization used
by Beavers and Koontz-Garboden (2012) and Rissman (2016).

(4) a. Phil swept.
b. *Tracy broke.

In such an account, manner and result are to be considered comple-
mentary, in that a verb can only lexicalize one of them. However, Levin
and Hovav (2008) also observe that there is some understood manner
component in many result verbs (e.g., the result of to clean10 is achieved
by acting in a specific manner), and likewise, some understood result
component in many manner verbs (e.g., to scrub is a manner of cleaning,
that will likely generate cleanliness of a surface as a result). This particular
observation serves to bridge the gap between this account, where lexical-
ized manner leads to felicitous object drop, to the other account, where
an overt, specified manner component blocks object drop. Beavers and
Koontz-Garboden (2012, p. 5) even make the case that so-called "poison
verbs", a sub-class of manner-of-killing verbs identified by Levin (1993,
pp. 230–233) in opposition to "murder verbs", actually entail bothmanner
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11: I am using terminology from Fellbaum
and Kegl (1989). Troponymy is a relation
among verbs akin towhat hyponymy is for
nouns, "although the resulting hierarchies
are much shallower" (G. A. Miller 1995).

12: Refer back to Section 2.4 for a discus-
sion of whether or not to have two sepa-
rate lexical entries for transitive verbs used
transitively and intransitively.

and result, contra Levin and Hovav (2008) and Rappaport Hovav and
Levin (1998). Crucially, Melchin (2019, pp. 71, 89) adds to this by arguing
that also to devour entails both manner and result, because the Agent
acting in a very specific manner brings forth the "manner" interpretation,
while the "scalar change affecting another participant" brings forth the
"result" interpretation (which was also in Levin and Rappaport Hovav’s
original proposal).

Introduction to "manner" as "semantic narrowness" The other inter-
pretation of the concept of "manner", which is the one I employ in my
experiments (Chapter 6 and Chapter 7) and probabilistic model of object
drop (Chapter 8 and Chapter 9), is offered by Rice (1988), Fellbaum and
Kegl (1989), and Næss (2007), among others. These authors argue that the
impossibility of omitting the object with verbs like to devour is explained
by the presence of a manner component in their meaning (see also García-
Velasco and Muñoz (2002) for further considerations). In other words,
while to eat (which Rice (1988) calls a "semantically neutral" verb) is a
base verb referring to a general activity, to devour (which Rice (1988) calls
an "action-plus-manner" verb) has an additional manner specification in
that it refers to a particular manner of eating. Most importantly, Melchin
(2019, pp. 49–50) shows that this distinction holds crosslinguistically
with examples in French, Dutch, and Arabic. The same also goes, for
instance, for to guzzle, to chugwith respect to basic to drink, and moving
from transitive to motion verbs, for to saunter, to stride with respect to
basic to walk.

Links between manner specification and Agent affectedness Næss
(2007, p. 139) provides an intriguing link between manner specification
and the affected-Agent account discussed in Chapter 2 and Section 3.1.2.
In particular, she observes that indefinite object drop is infelicitous with
manner-specified verbs because they typically refer to the way in which
the Patient (crucially, not the Agent) is affected, in true prototypical
transitive behavior. However, manner specification in the verb root stops
being an obstacle to object drop if proper context is provided to imply
Agent affectedness, as in her example in (5).

(5) The dinner was delicious, but Jane had no appetite and only
nibbled.

Bringing Agent affectedness into the equation can also solve a decades-
old conundrum by Fellbaum and Kegl (1989). Why do to mush, to nosh,
to graze allow for implicit indefinite objects while to gobble, to gulp, to
devour do not, despite them all being manner-specified troponyms11 of
to eat? Based on everything I observed about manner specification so
far, both the first and the second group of verbs should block indefinite
object drop on the basis of their manner component. In their taxonomic
account, Fellbaum and Kegl (1989) explain this issue by positing two
lexical entries for to eat12 , one meaning roughly "to eat a meal" and
another meaning "to ingest food". The first entry would be intransitive,
and its manner-specified troponyms (to mush, to nosh, to graze) are too. The
second entrywould instead be strictly transitive, and its manner-specified
troponyms (to gobble, to gulp, to devour) are too. As I argued in Section
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2.4, positing two separate lexical entries does little more than restate
the problem, without actually providing substantial explanatory power
to the discussion. I would instead explain the difference in transitivity
between these two groups of manner-specified troponyms of to eatwith
reference to the affected-Agent analysis. In particular, verbs like to mush,
to nosh, to graze are activity verbs with a clear focus on the way the action
affects the Agent (just like plain to eat), and indeed they do allow for their
object to be dropped. On the contrary, verbs like to gobble, to gulp, to devour
tend to highlight the affectedness of the Patient, making it necessary to
express it overtly with a direct object in the syntax.
A link betweenmanner specification andAgent affectedness also emerges
from Lemmens’s (2006) corpus analysis of verbs of killing in English,
such as to kill, to murder, to execute, to assassinate, to massacre. He finds that,
while to kill is not unlikely to be used intransitively in several corpora,
the same does not hold for the other verbs of killing, which never occur
with null objects. He attempts an explanation by observing that manner-
specified verbs of killing may have "a stronger Patient-orientation, as
they incorporate a more salient reference to Patients that are considered
important in some socio-economical context (to assassinate) or to a high
number of Patients (to massacre)". Flipping this perspective, to kill could
be argued to be more likely to license object drop because it projects
Agent affectedness more strongly than Patient affectedness, if compared
to the other verbs of killing. Even disregarding this possible explanation
of Lemmens’s (2006) findings, they still confirm the relevance of manner
specification in the implicit indefinite object construction.

Recoverability explains failures of a manner-based account Interest-
ingly, Rice (1988, p. 207) notes in passing that "verbs that are very neutral,
but that furthermore sustain a wide variety of complements, tend always
to require objects", considering the ungrammaticality of intransitive to
love as an example. Once again, object recoverability (as an effect of a tran-
sitive verb’s semantic selectivity) is shown to be prominent with respect
to other drivers of indefinite object drop. Recoverability also accounts for
some examples Jackendoff (2003, p. 134) cites as "immediate counterex-
amples" to the idea that manner specification is relevant for the issue of
argument drop, such as serve/give the food to Sally as opposed to serve/*give
the food, and insert/put the letter in the slot as opposed to insert/*put the letter.
These examples feature the omission of a Recipient/Goal instead of the
omission of a Patient (which I am focusing on), but the principle holds in
this case too. Indeed, to serve is a manner-specified troponym of to give
("a more specific form of giving", in Jackendoff’s words) and to insert is in
the same relation with respect to to put, but their hypernyms select for
a much wider range of arguments, making it much more difficult for a
speaker to recover them if they are unexpressed. Jackendoff also brings
two other examples to his argumentations, this time relative to direct
objects, i.e., juggle (six balls), flirt (with Kim). The two verbs are shown to
be grammatical both in their transitive and in their intransitive use. Since
the author calls them "highly specific verbs", it seems that he is conflating
both semantic selectivity and manner specification into the same label
of "semantic specificity". I argue that these two properties have to be
kept separated instead, and that whenever manner-specified verbs allow
for their object (or other internal argument) to be dropped, they do so
by virtue of the high recoverability of the intended object/argument
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14: Please refer to Cennamo and Lenci
(2019) and Cappelli, Bertinetto, and Lenci
(2019) for considerations on the argument-
hood of the added locative phrase to
motion-verb activities in Italian.

(stemming from the high semantic selectivity of the verb).

3.2 Aspectual factors

3.2.1 Telicity

Vendler’s aspectual classes Telicity, as a component of "lexical aspect",
is a well-known predictor of indefinite object drop. As shown in Section
2.1, Hopper and Thompson (1980) included it in their ten-parameter
account of transitivity as a prototype concept, associating telic aspect
with high transitivity and atelic aspect with low transitivity. Telicity is
one of the facets of so-called "lexical aspect", first organized by Vendler
(1957) into four Aktionsarten ("types of action") as in Table 3.1, to which
C. S. Smith (1991) then added a fifth class of "semelfactives"13

13: The term was actually coined by Com-
rie (1976, p. 42) to refer to "a situation that
takes place once and once only", such as
"one single cough", abiding by Latin et-
ymology (semel, ’once’). He observes in
a footnote that in Slavic linguistics the
equivalent of this term was used to re-
fer both to proper semelfactives and to
"clearly iterative" utterances such as He
coughed five times. More recently, the label
"semelfactive" became widespread in lin-
guistics in the imprecise sense attributed
to it by C. S. Smith (1991), i.e., referring to
atelic punctual events such as to knock, to
cough. However, the actual etymological
meaning of semelfactive would fit for any
event that occurs only once, independently
of its duration.

.

Table 3.1: Aktionsarten as defined by
Vendler (1957), plus semelfactives.

punctual durative

telic

achievement
(e.g., to find)

accomplishment
(e.g., to build)

atelic

semelfactive
(e.g., to knock)

activity
(e.g., to run)

stative - state
(e.g., to know)

To simplify a very complex issue, one might observe the following. The
first distinction to be made is between states, which cannot be used in
progressive aspects (e.g., *John is knowing), and the other categories. The
two dimensions along which non-stative verbs vary are durativity and
telicity. Durativity, which is quite self-explanatory, was also included
among the ten transitivity parameters by Hopper and Thompson (1980),
with punctual verbs being high in transitivity and durative verbs being
instead low in transitivity. The other dimension, i.e., telicity, is defined as
the property of having an endpoint of some kind. Crucially, literature
on telicity tends to envision it as a property of predicates, not just of
verbal heads (Hopper and Thompson 1980, p. 270). Thus, a durative
activity such as John is running can be made into an accomplishment by
specifiying a terminal point for the event, as in John is running home14 , and
vice versa. Under this account, then, intransitive uses of transitive verbs
would just be transforming accomplishments (durative and telic) into
activities (durative and atelic), as in John is smoking (a cigarette). Such an
account was explored by Mittwoch (1982) with respect to the intransitive
uses of transitive verbs.
One could be tempted to say that only activities are involved in the
implicit indefinite object construction, considering that, based on three
pieces of evidence I discussed so far,

I object drop turns accomplishments into activities (as argued just
now in this Section);

I intransitivization is a mechanism employed to focus on the activity
(refer to Page 23);

I activities are the only Aktionsart to bear two low-transitivity fea-
tures in Hopper and Thompson’s (1980) account (i.e., atelicity and
durativity).
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15: All examples here are from Vendler
(1957, p. 151).

16: The standard view that maximally af-
fected quantized objects determine telicity
(Tenny 1994; Verkuyl 1972) is challenged by
Smollett (2005) and Piñón (2008). For an
extensive discussion of this issue, which
is not within the scope of these pages, the
reader is referred to Melchin (2019).

17: I will delve intomore detail about telic-
ity tests in Section 6.2.1.

However, as Vendler (1957, p. 151) himself observes, this is not the
case. He makes an interesting point relative to what he calls a "habit-
forming" semantic behavior of some verbs, which also takes us back to
the observations about noun incorporation and the focus on the activity
in Section 2.4.2. In particular, while it is true that some activities are
"habit-forming"15 (such as to smoke inDo you smoke?), this behavior is also
shown by accomplishments (e.g., a writer is someone who writes books
for a living, just like a cabdriver is someone who drives a cab to earn
money) and achievements (e.g., dogcatchers catch dogs for a living).

(Non-) "Inherently telic" verbs Moving closer to the account of telicity
I am going to employ in my experimental setting (following Medina
(2007)), Van Valin and LaPolla (1997, p. 112) propose a distinction between
"inherently telic" verbs such as to kill and to break on one hand, and
activity verbs made into accomplishments, such as to eat, on the other
hand. This account still understands telicity as a feature of predicates, but
it also acknowledges that it can be somewhat embedded in the meaning
of a verb. I will return to this issue later in this Section. Crucially, as
observed by Newman and Rice (2006, pp. 5–6), the activity use of to eat
is considered the "basic" meaning of the verb in Van Valin and LaPolla
(1997). The presence of a direct object in sentences featuring such verbs
begets telicity depending on the nature of the object itself (Dowty 1991;
Filip 2004; Tenny 1994), so that a verb is telic if its "measuring argument"
is delimited (i.e., a quantized16 object), atelic otherwise (i.e., bare plurals
and mass nouns, as noted by Verkuyl (1972, 1989)). Adapting an example
from Tenny (1994, p. 24), to eat is telic in (6-a) because the apple is a
delimited measuring argument —the eating event ends when the apple
is gone. On the contrary, in (6-b) to eat is atelic, because there is no fixed
quantity of ice-cream for Chuck to consume. If he happened to live in
a universe blessed with neverending, incredibly cheap ice-cream, his
eating act could go on forever.

(6) a. Chuck eats an apple.
b. Chuck eats ice-cream.

This behavior, far from being expressed by to eat alone, is shown by all
incremental-theme verbs (already mentioned in Section 2.3.1). It is also
consistent with the classic in/for telicity test17 , as shown in (7).

(7) a. Chuck ate an apple in an hour / *for an hour.
b. Chuck ate ice-cream *in an hour / for an hour.

Næss (2007, 2011), Ruda (2017), and Willim (2006) note that intransitive
to eat is compatible both with a telic reading, as in (8-a), and with an
atelic reading, as in (8-b). With reference to her affected-Agent account of
object drop, which I discussed extensively in Section 2.4.2, Næss (2007,
pp. 78–79) argues that the telic reading is granted by Agent affectedness,
as if the Agent itself worked as a measuring argument in this case. The
atelic reading, instead, is argued to be typical of an event "leading to a
result state, but which is in principle independent of this result state"
(much like Vendler’s (1957) "habit-forming" verbs), e.g., to cook. However,
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it has to be noted that the Agent is indeed affected in some measure in
(8-b), making Agent affectedness a non-decisive factor.

(8) a. I ate in five minutes, then rushed off to work.
b. We ate all evening.

Crucially, and consistently with the particular perspective adopted by
Medina (2007) (and, following her, by me) following Olsen (1997 [2014]),
the atelic interpretation of intransitive to eat seems to be more easily
attained than the telic interpretation, since it does require less processing
effort. In other words, both interpretations imply a focus on the activity
(rather than on the Patient object, which is missing altogether), but the
telic interpretation also requires that one understands the sentence as if
putting additional focus on the way the Agent is affected by the activity.
Quoting Olsen and Resnik (1997, p. 4), implicit indefinite objects need to
appear "in the appropriate context" in order to get a telic interpretation.
Næss (2007, p. 79) actually leverages the bivalent behavior of intransitive
to eatwith respect to telicity to weaken the use Hopper and Thompson
(1980) make of this parameter to determine transitivity, at least in the
specific case of this verb. However, since a rule specific to a single verb
would not make for a strong grammar, I argue that telicity as a factor
determining (or blocking) object drop is there to stay.

A note on telicity and (in)definite object drop "Inherent telicity" has
interesting consequences on the theory of object drop, and in particular
on the distinction between definite and indefinite object drop discussed in
Section 2.2, as observed byOlsen andResnik (1997, pp. 3–4)with reference
to Allerton (1975), Mittwoch (1982), and Olsen (1997 [2014]). What they
note is that implicit objects tend to receive indefinite interpretations
with atelic verbs (unless they appear in particularly favorable contexts
as to license a definite interpretation, as seen in (8-a)) and definite
interpretations with telic verbs. An example of this argumentation is
provided in (9), adapted from Olsen and Resnik (1997, p. 3). In (9-a), the
inherently telic verb to win is shown to require a definite interpretation
for the missing object, while it can be interpreted as indefinite when
occurring with an inherently atelic verb such as to eat in (9-b).

(9) a. Benjamin won, #but I don’t know what.
b. Benjamin ate, but I don’t know what.

However, such a telicity-as-definiteness account is not bulletproof. In
this Paragraph I already made reference to the possibility of inducing
a definite interpretation for implicit objects of inherently atelic verbs,
provided sufficient context. I argue that it is also possible to induce
an indefinite interpretation for implicit objects of inherently telic verbs,
e.g., by presenting the action as iterative or habitual (Goldberg 2001,
pp. 507–509), as in (10). Example (10-a) would be ungrammatical if the
missing object was given a definite interpretation, but it can actually be
considered at least partially acceptable (even though to kill is inherently
telic) under a habitual reading. Indeed, the Joker is a notorious fictional
villain from the Batman universe known for his ruthlessness, so it would
be quite easy to imagine killing to be a frequent habit of his. This effect is
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18: Actually, Olsen indicates the absence
of telic denotation with [0 Telic], rather
than with [-telic]. However, I will use the
latter notation here for clarity, and also
for consistency with my later use of this
feature throughout my dissertation.

much more evident in (10-b), where the iterative reading is made explicit
by the addition of the adverb again, without need for extra-linguistic
context.

(10) a. # The Joker killed.
b. The Joker killed again.

I will expand more on this in Section 3.3.2 and Section 6.4. For now,
suffice it to say that implicit objects occurring with both inherently telic
and inherently atelic verbs can be made to yield either a definite or an
indefinite interpretation based on context. In particular, with relevant
implications for my own model of object drop, both telic and atelic verbs
can occur felicitously with implicit indefinite objects.

Olsen (1997)’s account of telicity Let us now comment on the specific
account of telicity I am going to employ in my experimental setting (see
also Section 6.2 for details on the implementation). Since I intend my
probabilistic model of the implicit indefinite object construction as an
expansion upon the original model by Medina (2007), I am going to base
my interpretation of telicity on the same source she chose for her study,
i.e., Olsen (1997 [2014]).
In her "semantic and pragmatic model" of aspect, Olsen (1997 [2014])
interprets telicity as a privative feature. This means that a verb can either
have or not have the [+telic] feature. This feature, assigned to achieve-
ments and accomplishments, denotes in her words "the existence of an
end or result to which a situation naturally will lead, not necessarily the
actual attainment of such an end". The interpretation of the attainment of
this end depends, in her view, not only on telicity, but also on perfectivity
and tense (as I will discuss in more detail in Section 3.2.3). Crucially,
the [+telic] feature is "semantic", in Olsen’s words, and cannot be can-
celed by additional constituents. Consider, for instance, her examples
in (11). She notes that "although durative adverbials are supposed to
turn accomplishments into activities, (11-a) and (11-b) represent iterative
accomplishments".

(11) a. Eli won for years.
b. Eli ran a mile for years.

On the contrary, she considers the [-telic] feature18 to be "a cancelable
conversational implicature", as exemplified in (12). This means that atelic
verbs can receive a telic interpretation by adding a measuring argument,
such as a bounded object in (12-a) or a Goal in (12-b). Indeed, "progressive
forms of atelic verbs are said to entail the corresponding perfect form"
(e.g., Eli is running entails Eli has run), but neither sentence in (12) obeys
this requirement (e.g., Eli is running a mile does not entail Eli has run a mile).
This particular state of affairs is known as the "imperfective paradox"
(Dowty 1979 [2012]; White 1993), stating that progressive aspect overrides
the result entailment (refer to Copley and Harley (2015), Dvořák (2017b,
p. 115), and Melchin (2019) for more on this issue).

(12) a. Eli is running a mile.
b. Eli is running to the store.
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19: This traditional account (Tenny 1994)
gets re-interpreted by Smollett (2005),
who argues that quantized objects do not
strictly delimit the event, but they just
make the delimiting endpoint contextu-
ally available. Either way, Olsen’s account
still holds.

20: Not necessarily completed, as Comrie
(1976, p. 18) observes with examples from
several languages.

21: This is not true of every languagemark-
ing grammatical aspect morphologically.
For instance, in Latin it is only possible
to encode the perfective/imperfective dis-
tinction in the past tense.

22: Which gets fully realized only when
interpreted within the full linguistic con-
text.

This is consistent with other views of telicity discussed before in this
Section, where implicit objects were argued to be more easily accepted
with atelic verbs than with telic verbs, since an overt object is usually
required by telic verbs (for which it works as an explicit endpoint19 or,
in other words, a "measuring argument"), while it is admitted, but not
required, by atelic verbs.
Following Olsen, Medina (2007) uses telicity as a binary predictor of
object drop. Crucially, she assigns the [+telic] or [-telic] feature to the
target verbs themselves, rather than to the predicates they head. Thus, a
verb in her experimental setting can either be inherently telic or inherently
atelic, on the basis of rigorous tests she performed beforehand (refer to
Section 6.2 for more details on the tests).

3.2.2 Perfectivity

Introduction Perfectivity, as a component of "grammatical aspect"
or "viewpoint aspect", is a property assigned to a verb based on the
perspective the speaker has on the temporal constituency of the event the
verb describes (Comrie 1976). Thus, an event seen as complete20 , having
an initial and a final point, will be encoded by a verb in the perfective
aspect, while an event seen as ongoing, having neither an initial nor a final
point, will be encoded by a verb in the imperfective aspect. For instance,
the perfective/imperfective opposition can be seen in (13), relative to
English to write, which is perfective in (13-a) and imperfective in (13-b).

(13) a. John had written a thesis.
b. John was writing a thesis.

The grammatical relevance of the property of perfectivity varies crosslin-
guistically. In Slavic languages, such as Russian, perfectivity is embedded
in the lexicon itself, so that sentences like the ones in (13) would actually
require two different lexical entries to refer to the same writing event (i.e.,
napisat’ for the perfective form and pisat’ for the imperfective form). In
other languages, such as English and Italian, (im)perfectivity is encoded
with morphological means on a single verb lexical entry, and both per-
fective and imperfective aspects are compatible with any tense21 (more
on the relation between aspect and tense in Section 3.2.3).
Crucially, while telicity is a property of verbs themselves22 (as argued in
Section 3.2.1 on the basis of Olsen (1997 [2014]) and Medina (2007)) or of
predicates, perfectivity is a property of events, which gets encoded on
verbal heads in different ways (morphologically, in the two languages
I am interested in). As discussed in Chapter 6 and shown in Chapter 7,
this will have important consequences on my experimental setting.

Perfectivity and object drop Grammatical aspect has been argued to
play a role in licensing or blocking indefinite object drop, even though
it appears to be a path less trodden than lexical aspect. Medina (2007,
p. 30) explains the lesser attention devoted to perfectivity as a predictor
of object drop with reference to the fact that for many years scholars
interpreted object omission as a verb-specific phenomenon (refer back to
Chapter 2 for a full commentary on this). Nevertheless, literature on the
matter (Cote 1996; Dvořák 2017b; Lorenzetti 2008; Næss 2007; Tsimpli and
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23: Kalkatungu is a language belonging
to the Pama–Nyungan family, spoken in
Australia.

24: It has to be noted that this account is
only valid for languages exhibiting a kind
of split ergativity that is conditioned by
the grammatical aspect.

Papadopoulou 2006) agrees that imperfective aspect (encoding duration)
is more likely than perfective aspect (encoding completion) to license
implicit objects. Compare, for instance, (14-a), where to write appears in
perfective aspect and blocks object drop, and (14-b), where it appears in
imperfective aspect and allows for indefinite object drop.

(14) a. *John had written.
b. John was writing.

Tsimpli and Papadopoulou (2006, p. 1609) explain this by observing that
"perfectivity is understood as involving an endpoint", which is made
explicit by the use of an overt object.
This different behavior expressed by perfective and imperfective clauses
holds crosslinguistically. For instance, Tsimpli and Papadopoulou (2006,
p. 1597) observe that while null objects are acceptable bothwith perfective
and with imperfective verbs in Greek, they tend to be favored more by
imperfective aspect. They also note (Tsimpli and Papadopoulou 2006,
p. 1601) that the strict ungrammaticality of indefinite null objects occurring
with perfective verbs in Russian (and Polish, as found in Sopata (2016,
p. 89)) is not found in Greek. As for the languages I will base my
model on, Medina (2007) provides experimental evidence in support
of imperfective clauses being more prone to favor object drop than
perfective clauses in English, while Cennamo (2017) comments on Italian
sentences reaching the same conclusion.Moving to typologically different
languages, Næss (2007, p. 118) observes that in Kalkatungu23 variation
in grammatical aspect is accompanied by changes in case-marking,
i.e., ergative-absolutive in perfective clauses and absolutive-dative in
imperfective clauses. This becomes relevant for the role of perfectivity in
the implicit indefinite object construction when compared to previous
observations about ergative languages made in Section 2.4.2, where the
case was made that subjects of intransitive verbs and transitive verbs
used intransitively are in the absolutive case (as they are in imperfective
clauses in Kalkatungu), while subjects of transitive verbs used transitively
are in the ergative case (as they are in perfective clauses in Kalkatungu).
To put it more simply, since object drop is favored by imperfective aspect,
it stands to reason that in such languages case gets assigned accordingly.
The limitation of ergative constructions24 to perfective environments
is also noted in Hopper and Thompson (1980, p. 271), specifically with
evidence from Hindi and Georgian, and references to literature about
other languages.

3.2.3 Interactions among telicity, perfectivity, and tense

Telicity and perfectivity There are several comparisons to be drawn
between telicity and perfectivity, and also between tense and these two
facets of aspect (Yousefi and Mardian 2019, pp. 394–397). I will come
back to this in Section 6.3.1, focusing on observations bearing direct
consequences for my experimental design. Here, I will focus instead on
broader concerns.
Lazard (2002, p. 162) notes "an affinity between the incompleteness of
the process and the low individuation of the object", which is one of
the ten parameters of prototypical transitive clauses in the account by
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Hopper and Thompson (1980) (see Section 2.1, and Table 2.1 in particular).
According to Lazard, an event can be construed as incomplete when the
verb is in "an incompletive aspect" (progressive, habitual, imperfective...)
or when "the object is only partly affected" (which is typical of atelic
verbs and indefinite objects, which are interpreted as non-measuring
plurals or mass nouns, as seen in Section 2.3.2). Relatedly, Næss (2007,
p. 118) puts a particular focus on the association between the concept
of delimitedness and the concept of affectedness. Thus, Lazard shows
that atelicity and imperfectivity share the property of favoring indefinite
object drop by construing the event as incomplete. Moreover, similarly
to what Olsen (1997 [2014]) concludes about telicity (telic aspect being
uncancelable, unlike atelic aspect), Dvořák (2017b) notes that perfective
aspect is the marked form and imperfective aspect is the unmarked form.
The close relation between telicity and perfectivity is also found in
Hopper and Thompson (1980) themselves, who explicitly state they
use these two terms "interchangeably" (Hopper and Thompson 1980,
p. 270). They justify this choice, which nowadays would be untenable
(Bertinetto 2001; Bertinetto and Delfitto 2000; Civardi and Bertinetto
2015), by acknowledging the poverty of the literature on the matter
up to their time of writing —indeed, they note that it would be "risky
to infer a distinction between the two types of aspect when none is
explicitly discussed". However, consistently with previous observations
about telicity and perfectivity provided in this Chapter, Hopper and
Thompson recognize that telicity "can be determined generally by a
simple inspection of the predicate" while "perfectivity is a property that
emerges only in discourse".

Preminence of telicity over perfectivity Tsimpli and Papadopoulou
(2006, p. 1598) observe that both imperfective and perfective activity verbs
in Greek receive an atelic reading when combined with bare plurals (e.g.,
Helen painted / was painting portraits), hinting towards a more preminent
role of (a)telicity than (im)perfectivity in determining indefinite object
drop, even though the two are related in multiple ways. Indeed, if
imperfectivity played a bigger role than atelicity, data would show that
only imperfective verbs, regardless of their telicity feature, could occur
with bare plurals (which, I insist, are the only possible interpretation for
indefinite null objects together with mass nouns). The hypothesis of the
preminence of telicity on perfectivity with respect to their role in the
implicit indefinite object construction is also consistent with experimental
evidence from English and Italian I will provide in Chapter 8. Even more
strongly, Stoica (2017) finds that native speakers of Romanian are equally
avoidant of indefinite null objects both in perfective and in imperfective
contexts.
The preminence of telicity on perfectivity is found not only in adult
grammar, but also in the early stages of grammar acquisition by children.
In particular, three-year-olds and younger children have been shown
to assign preferably imperfective aspect to atelic verbs and perfective
aspect to telic verbs both in production and in comprehension (Medina
2007; Olsen, Weinberg, et al. 1998; Wagner 2001). However, this account
of L1 acquisition, which is known as "aspect-first hypothesis" in the field
(Antinucci and R. Miller 1976), needs to be taken with a pinch of salt. An
alternative view exists in the literature claiming that children, instead
of first acquiring aspect as entangled with Aktionsart and tense (i.e.,
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atelic=imperfective=present vs telic=perfective=past), actually extract
the relevant information out of the morphological structure of their L1
instead of relying on a pre-built strategy (Bertinetto, Freiberger, et al.
2015; Bertinetto, Pacmogda, and Lenci 2021).

Tense and aspect As noted by Medina (2007, p. 68), tense and aspect
are independent but interrelated properties, "to the extent that one en-
courages certain interpretations of the other". In adult grammar (Comrie
1976) and especially in child grammar (Wagner 2001), for instance, past
tense may induce a perfective interpretation of the event. I will return on
the relation between past tense and perfective aspect in Section 6.3.1.
With specific regard to the implicit indefinite object construction, Dixon
(1992), Glass (2020), and Goldberg (2005b) note that verbs in the past
tense tend to block object drop. On the contrary, García-Velasco and
Muñoz (2002, p. 9) note that present tense, interpreted as an expression
of imperfectivity, favors object drop.

3.3 Pragmatic factors

In this Section, I use "pragmatic factors" as an umbrella term for several
factors (neither verb-specific nor aspect-related) involved in the implicit
indefinite object construction. The term covers not only purely pragmatic
factors (such as a routine interpretation), but also phenomena related to
intra-linguistic context (such as iterativity and habituality) and discourse
factors (such as emphasis and contrastive focus). These factors, which
Medina (2007) did not include in her novelmodel of indefinite object drop,
are nevertheless crucial in a comprehensive analysis of this construction.
Indeed, as DeLancey (1987, p. 54) observes in his cognition-oriented
account of transitivity parameters, the interpretation of utterances in
actual language use is based on real-world context or, failing such, on
discourse context. This also echoes the conclusion, reached by Prytz (2016,
p. 176), that the "structural sides of linguistic meaning" go hand in hand
with the "contextual, pragmatic, and encyclopedic sides of meaning".

3.3.1 Purely pragmatic factors: routine

Routine is described by Glass (2020, p. 2) as "a series of recognized,
conventional actions within a community", whose association with
a given verb is shown by experimental evidence to vary gradiently
across different communities of speakers. The author observes, with no
dearth of experimental evidence fromReddit communities, that transitive
verbs describing routines facilitate object drop and, likewise, object drop
induces hearers to imagine scenarios where the described event is routine
for its performers. She also makes an explicit connection between this
account and the object-drop-as-noun-incorporation account I discussed
in Section 2.4.2.
Crucially, routine cannot be construed as yet another semantic factor,
because it is strongly rooted in extra-linguistic context (unlike semantic
factors such as the ones I discussed in Section 3.1, which are strictly
related to the very meaning of the verb itself). In particular, speakers
encode a lot of world knowledge in their utterances when they use a
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25: Which Idiscussed extensively inChap-
ter 2.

verb to convey a routine interpretation, and hearers (or readers) of such
utterances have to be aware of the specific context they stem from in
order to make sense of the intended meaning. For instance, example (15)
from Glass (2020, p. 9) would only be correctly interpreted as "you are
not in the habit of lifting weights to exercise" if one knew that it was
uttered in the context of a conversation about fitness.

(15) You don’t lift.

The role of world knowledge in facilitating object drop is also noted
by Eu (2018, p. 528), where reference is made to "contextually estab-
lished semantic specialization". Here, "context" is taken to refer both
to "immediate context" such as the time and place of utterance, and to
"general context" such as world knowledge and the life habits of the
speaker. Similarly, the routine-licensed account of object drop contributes
to explaining the "specialized readings" of verbs such as to eat (i.e., "to
eat a meal") and to drink (i.e., "to drink alcohol")25 noted, among others,
by Næss (2011, p. 420).

3.3.2 Linguistic-context factors: iterativity and

habituality

Mittwoch (2005, p. 237) observes that "the omissibility of unspecified
objects is for many verbs subject to contextual factors". For instance,
she notes that habitual contexts, "where the lexicon interacts with more
general properties of the sentence", are more likely to license object drop
than episodic contexts. Mittwoch uses the term "habitual" in a way that
closely resembles the account provided by Glass (2020) (refer back to
Section 3.3.1). Indeed, she understands the "imbibe alcoholic beverages"
interpretation of intransitive to drink to be a habitual reading of the verb,
since it refers to a habit the Agent is shown to have. She also applies the
term, admittedly "rather freely", to sentences such as (16-a), where the
habitual reading is not inferred by means of verb semantics and world
knowledge (as in the case of to drink), but instead via extra-linguistic
context —the Agent is obviously not reading the Iliad in his sleep, but
he is in the habit of doing so while awake. Dispositional properties and
professions appear to be another class of broadly-defined habits giving
rise to felicitous object drop, as Mittwoch shows in (16-b) and (16-c),
respectively. Similar considerations are also found in Fellbaum and Kegl
(1989), Levin (1993, p. 39), Goldberg (2001, p. 518), and Pethõ and Kardos
(2006, p. 29).

(16) a. He is reading the Iliad at the moment.
(said about somebody who is asleep)

b. Fido bites.
c. She directs (films), produces (films), conducts (music), dyes

(textiles), programmes (computers).

Goldberg (2001, p. 518) argues that these "characteristic property" ex-
amples, where some typical transitive verbs can be used intransitively
to elicit the interpretation that the action is somewhat characteristic of
the agent, get easily explained by her principle of Omission under Low
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26: It should be noted that Lavidas (2013),
a lone voice, argues that in English indefi-
nite null objects of the kind illustrated by
(18) "are not accepted by all native speak-
ers". He even argues that only definite
implicit objects are possible in modern
English, but I would note that decades
of literature on the matter, as well as my
own contribution in these pages, demon-
strate that indefinite object drop is indeed
a possibility in modern English.

Discourse Prominence (which I introduced on Page 23). However, she
also observes that the characteristic-property interpretation is not strictly
required —I would say, the characteristic property can be interpreted as
either permanent or temporary, as long as it is implied in some way. She
provides an example of this in (17).

(17) That dog has been known to occasionally bite, but he is generally
very loving.

In addition to habitual contexts, Mittwoch (2005, p. 248) also discusses
other examples of pluractionality (Lasersohn 1995 [2013]), i.e., contexts
fostering event plurality, as in (18)26 . With respect to pluractionality,
Bertinetto and Lenci (2012) observe that habituality, where "the resulting
habit is regarded as a characterizing property of a given referent", is
closely related to iterativity (both being expressions of pluractionality) but
distinct from it (since habituality, but not iterativity, belongs to the class
of "gnomic imperfectives", i.e., constructions having "a characterizing
function" expressed in the imperfective aspect in languages with explicit
aspectual marking).

(18) a. They murdered, raped, and plundered.
b. [International tribunals] are valuable, she argues, because

when they punish criminals, they also affirm, condemn,
purge, and purify.

Most importantly, it should be noted that (18-a) is not a good example of
habituality belonging to "gnomic imperfectives", since Simple Past is as-
pectually neutral in English. Let us consider the two possible translations
of Mittwoch’s example in Italian, provided in (19). Since both (19-a) (with
verbs in the passato remoto tense, aspectually perfective) and (19-b) (with
verbs in the imperfetto tense, aspectually imperfective) are grammatical,
then, it is pluractionality and not grammatical aspect making (18-a) (as
well as the Italian equivalents in (19)) acceptable. As a consequence, one
should distinguish two independent factors:

I pluractionality, either aspectually expressed, as in (19-b), or contex-
tually driven, as in (18-a) and (19-a);

I imperfectivity, to be specifically intended as progressivity rather
than habituality, as in (20).

(19) a. Uccisero, stuprarono, saccheggiarono.
b. Uccidevano, stupravano, saccheggiavano.

(20) John was writing.

Mittwoch (2005, p. 250) further observes that habitual contexts favor
object drop with verbs that would usually block it, such as the verbs of
destruction used in (21).

(21) a. They usually demolish rather than restore.
b. They fell indiscriminately.
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27: Warrungu is a language of the
Pama–Nyungan family, spoken in Aus-
tralia.

28: She actually claims that "the under-
lying motivation for the expression of ar-
guments is at root pragmatic", in a much
more stronger account of the role of prag-
matics than the one I am arguing for here.
Ahringberg (2015) observes that Gold-
berg’s claim is in direct constrast with
the account provided by Fillmore (1986).
A mild critique of all-pragmatic accounts
of object drop is also found in Németh
(2014).

I briefly mentioned iterative contexts in (10), here reported again in (22),
where the verb to kill was shown to admit an implicit indefinite object
more easily when used iteratively, as in (22-a), than in an episodic context,
as in (22-b).

(22) a. The Joker killed again.
b. # The Joker killed.

Glass (2013, p. 5) explains this difference between iterative and episodic
sentences by claiming that more information is lost when object drop hap-
pens in the latter than in the former. In other words, "in these sentences
describing iteration, it becomes less likely that interlocutors’ commu-
nicative purposes would be thwarted" by object drop. In an interesting
account of the transitivity of iterative constructions in Warrungu27 ,
Tsunoda (1999, pp. 4–5) notes that in this language the iterative suffix,
typically having imperfective readings (e.g., iterative and habitual), tends
to combine with verbs that are very low on the transitivity scale, consis-
tently with everything I observed about iterativity so far in this Section.
The facilitating role of iterativity with respect to the implicit indefinite
object construction, amply discussed by Goldberg (2001), will be further
explored in Section 6.4 relatively to my experimental setting.

3.3.3 Discourse factors: emphasis, coordination and

contrastive focus

According toMittwoch (2005, pp. 251–252), "themost permissive contexts
for object drop involve pairs of verbs that stand in some sort of semantic
contrast", even when these verbs are "some of the poorest candidates
for object drop" (e.g., to break and other prototypical change-of-state
verbs). Contrastive focus is also discussed in these terms by Dixon (1992).
Examples (23-a) and (23-b) are from Mittwoch, while examples (23-c)
and (23-d) (featuring coordination instead of constrastive focus) are from
Cote (1996, pp. 112, 143).

(23) a. This one creates, that one destroys.
b. A few people bought, most just looked.
c. You wash and I’ll dry.
d. Bert pushed and Ernie pulled.

In these cases, where the verbs "prop each other up", object drop "is
clearly a rhetorical device" used to put all the focus on the verb itself
(refer to Page 23 for more on this).
In addition to constrastive focus, Goldberg (2006, pp. 196–197) mentions
several other pragmatic factors licensing28 object drop, or, as she calls
it, the "Deprofiled Object construction". These additional factors are
"repeated action" (which Rissman (2016) terms "x-and-x construction"),
as in (24-a), and "strong affective stance", as in (24-b). In particular,
Rissman (2016) interprets repeated-action contexts to target agentive
meaning, i.e., to highlight "an atelic event in which the agent repeatedly
performs an action". This, consistently with the affected-Agent account I
discussed on Page 25, would appear to favor the implicit indefinite object
construction.
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(24) a. Pat gave and gave but Chris just took and took.
b. He murdered!

Goldberg (2001, pp. 506–514) also identifies additional discourse fac-
tors facilitating object drop, i.e., generic statements, as in (25-a), and
infinitives, as in (25-b). Once again, object drop is shown to be favored
by pluractionality. She notes (Goldberg 2001, p. 507) that in these cases
"atelicity could supply the appropriate constraint", given that "repeated
actions are often construed as atelic or temporally unbounded events",
and atelicity (as discussed in Section 3.2.1) strongly facilitates object
drop.

(25) a. Tigers only kill at night.
b. The singer always aimed to please/impress.

To all these discourse factors, Glass (2020, p. 3) also adds modal state-
ments, as in (26).

(26) Dresses I would murder for.

Lorenzetti (2008, p. 66) uses "structural omission" as a cover term for the
discourse factors discussed here. Finally, Cummins and Roberge (2005,
p. 46) provide an interesting review of not-so-recent pieces of literature
in French language from the late ’80s to the year 2000 about the role
of pragmatics (i.e., contextual, discursive, constructional, and intention-
related factors) in favoring object drop. Together with Goldberg (2001,
2005a,b, 2006), Groefsema (1995) is another strong advocate for the idea
that object drop is driven, first and foremost, by pragmatic factors (contra
Pethõ and Kardos (2006, p. 29)). Lamenting the scarcity of literature
on the interaction between lexicon and pragmatics, García-Velasco and
Muñoz (2002, p. 7) praise Groefsema, and also Allerton (1975), Fellbaum
and Kegl (1989), and Fillmore (1986) as "notable exceptions".

3.4 A note on frequency

Frequency, intended as the number of times a verb (or a verb-object pair)
occurs in a corpus, has often been observed to be somewhat correlated
with other factors playing a role in felicitous object drop. For instance,
Resnik (1996, pp. 149–151) hypothesizes that semantic selectivity (dis-
cussed in Section 3.1.1 and Section 6.1.1) should be positively correlated
with the corpus frequency of transitive verbs used without a direct object,
based on the idea that verbs selecting for highly recoverable objects
should occur more easily without them than verbs selecting for scarcely
recoverable objects. His results show that while high omission frequency
correlates with high semantic selectivity, some verbs deviate from this
trend by failing to participate in the implicit indefinite object construction
despite being high-recoverability verbs. Interestingly, the opposite (i.e.,
low-recoverability verbs omitting their object very frequently) never
happens, which Resnik takes to mean that "this pattern reflects an un-
derlying hard requirement, namely that strong selection is a necessary
condition for object omission". However, these findings are not replicated
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29: Such as the one provided by the sen-
tence John ate early today, where generic
to eat is understood to refer to the act of
eating a meal.

by Ruppenhofer (2004, p. 441), who finds no association between verb
frequency and their tendency to allow implicit objects in a study using a
34-verb set only partially overlapping with Resnik’s 30-verb set.
Medina (2007, p. 165), using the same verb set and semantic selectivity
measure as Resnik (1996), further observes that frequency fails to show a
precise correlation with gradient grammaticality judgments provided
by human subjects about implicit indefinite objects, since some verbs
received intermediate judgments despite never being used intransitively
in the Brown corpus. Medina provides two interpretations for this phe-
nomenon, one where this is simply an artifact depending on the small
size of the corpus, and another ascribing this mismatch betweenmid-way
judgments and null corpus frequency to the existence of a threshold
grammaticality value in the minds of speakers blocking them to utter
sentences less grammatical than that ideal value (refer to Kempen and
Harbusch (2005) for a similar account of the existence of what they call a
"production threshold"). The existence of this threshold, and its actual
numerical value, is an open question for future studies comparing native
judgments and language production.
Goldberg (2005b) offers another relevant insight as to the role frequency
plays in object drop. She suggests that frequent use of some verbs (e.g.,
to smoke, to drink, to sing, to write) in contexts favoring a habitual interpre-
tation (discussed in Section 3.3) may give rise to "the grammaticalization
of a lexical option, whereby they can appear intransitively in less con-
strained contexts" such as generic contexts29 not implying habituality.
Under this view, further discussed by Lorenzetti (2008, p. 65), frequency
is not a direct cause of object drop, but it appears to be a rather strong
facilitator in a diachronic perspective. Another example of frequency
facilitating object drop, both in a synchronic and in a diachronic account,
is that of verb pairs where the less frequent near-synonym does not allow
implicit indefinite objects (e.g., to devour, compared to to eat). I devoted
some space to the conundrum presented by such verb pairs, discussed
by Glass (2020), Goldberg (2005b), and Lorenzetti (2008) among others,
in Chapter 2 and in Section 3.1.3.
To conclude, indefinite object drop is never a direct consequence of fre-
quency itself, crucially, and frequency has been shown time and again to
be a poor correlate of recoverability or object-droppability. Given this, in
my experimental setting (presented in Chapter 7) I will employ strategies
to avoid having frequency be a confounding factor in my experiments
on human acceptability judgments (refer to Section 7.2.2 and Section
8.1.2).

3.5 Final considerations

In this Chapter, I presented a series of factors which the literature on
indefinite object drop identifies as facilitators of the intransitive use of
transitive verbs. In particular, they are:

I semantic factors: object recoverability (strongly correlated with
the semantic selectivity of a verb), Agent affectedness, and man-
ner specification (intended as a feature of "semantically marked"
counterparts of neutral verbs, e.g., to devour with respect to to eat);
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I actional/aspectual factors: telicity (lexical aspect), perfectivity
(grammatical aspect), and aspectually driven pluractionality (i.e.,
habituality);

I pragmatic, contextual, and discourse factors: iterativity, contextu-
ally driven pluractionality, routine, emphasis, coordination, and
constrastive focus.

I also noted that corpus frequency, both of verbs themselves and of in-
definite null objects, is a rather unreliable correlate of the likelihood of a
transitive verb participating in the implicit indefinite object construction.
Moreover, it is never a direct cause of indefinite object drop —rather, it is
a consequence of other factors at play.
Crucially, no factor among the ones I discussed here is able to predict
indefinite object drop with absolute certainty. Indeed, while they all
contribute to the phenomenon, none alone is responsible for it. Moreover,
there is considerable difference in the effect of each factor on the omissi-
bility of indefinite objects. For instance, while the literature consistently
acknowledges that recoverability is the main driver of indefinite object
drop, there are way fewer accounts relative to Agent affectedness, and
this has also been noted to be a controversial factor on Page 40. Among
semantic factors, manner specification (in the sense I use in this the-
sis) is considered to be a rather strong factor when comparing pairs of
hypernym-troponym verbs where one is the manner-specified counter-
part of the other. Among aspectual factors, telicity and perfectivity are
reliable predictors of object drop, by and large, with telicity playing a
somewhat larger role than perfectivity. Among pragmatic factors, which
appear to be less powerful and more constrained than semantic and
aspectual factors in facilitating object drop, some are expressed by linguis-
tic means (e.g., iterativity, coordination, contrastive focus), while others
are (also, or only) dependent on extra-linguistic context (e.g., routine,
emphasis).
I picked my factors of choice based on several considerations:

I I want to expand upon the original model of indefinite object
drop by Medina (2007), who used semantic selectivity, telicity, and
perfectivity as predictors;

I since the same semantic and aspectual factors are at play in context-
poor and context-rich utterances (as I argued in Section 2.5), I want
to avoid using context-dependent factors in my experiments in
order to avoid context-related confounding effects;

I based on previous observations in this Section and throughout this
Chapter, Agent affectedness does not appear to be strong enough
of a factor to be included in my models;

I corpus frequency is not going to be featured in the model, for
reasons stated in Section 3.4 and before in this Section.

Thus, the predictors I will use in my Stochastic Optimality Theoretic
models of indefinite object drop are: semantic selectivity (as a proxy
to object recoverability), telicity, perfectivity, manner specification, and
iterativity (because, among the context-free pragmatic factors, it is the
only one requiring just the one verb in the stimulus sentence). I will
discuss the experimental implementation of each in Chapter 6.
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Themodel of the implicit object construction presented in this dissertation
was developed under the Optimality Theory framework. In particular, it
builds on the version of Stochastic Optimality Theory defined by Medina
(2007) in order to model indefinite object drop in English.
In Section 4.1, I will present standard Optimality Theory and discuss both
its strengths and its shortcomings. In Section 4.2, I will argue in favor of
a gradient model of grammar to account for the gradient grammaticality
shown by the indefinite implicit object construction. Section 4.2.1 will be
devoted to Harmonic Grammar, the historical precursor of Optimality
Theory, which is shown to possess attractive mathematical properties its
descendant lacks, but also a number of problems making it a bad fit for
modeling object drop. In Section 4.2.2 and Section 4.2.3, I will tackle the
problem of moving from modeling the binary judgments traditionally
used in syntax theory to modeling complex gradient judgments, which
lead to the development of probabilistic grammars. A discussion of these
and an in-depth introduction to Stochastic Optimality Theory will be
provided in Section 4.2.4.

4.1 Standard Optimality Theory

4.1.1 Introduction

In Chapter 3, the optionality of direct objects has been shown to depend
on a large number of semantic, aspectual, and pragmatic factors. The
challenge a linguistic model of object drop has to undertake is to account
not only for the existence of the relevant factors, but also for their
combined effect on the grammaticality of the implicit object construction.
Mymodel will be based upon a probabilistic variant of Optimality Theory
(Prince and Smolensky 1993 [2008], 1997; Smolensky and Prince 1993),
devised by Medina (2007). A full introduction to Optimality Theory and
its intricacies goes well beyond the scope of this thesis, so I will only
provide a short presentation to familiarize the reader with the framework
and clarify its role in my research.
In a nutshell, the grammaticality of a linguistic structure in Optimality
Theory is defined in terms of its well-formedness with respect to a set
of conflicting, re-rankable constraints. The constraints themselves are
universal, while the order in which they are ranked is language-specific
and determines the optimal (i.e., grammatical) output. Let us rephrase
this in more technical, theory-specific terms. A grammar in Optimality
Theory is built upon three components:

I Gen is the function that generates candidate outputs based on the
input provided. This function is unconstrained in its generative
power, so that it can create any number and type of candidates by
applying any operation, such as insertion and deletion, to the input
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(a property called "freedom of analysis"). Typically, software (such
as OTSoft by Hayes, Tesar, and Zuraw (2003) or SPOT by Bellik
and Kalivoda (2019)) is used to trim the candidate set down to a
feasible number of candidates to the optimization, since it would
be time-prohibitive to do so by hand.

I Con is the set of universal, violable constraints, whose ranking
hierarchy makes up the grammar of a language. They can be
of two different types. Markedness constraints force the output
to satisfy some requirements, leading it to differ from the input
depending on the specific requirement. Faithfulness constraints,
on the contrary, require that the output be identical to the input
and penalize any deviation. The conflict between markedness and
faithfulness constraints is at the heart of Optimality Theory.

I Eval is the function that picks a winner among the candidates,
based on the constraint ranking. In Standard Optimality Theory,
the relation between any two constraints is one of strict domination,
meaning that the higher ranked constraint always dominates the
lower ranked one regardless of how many violations each of them
incurred in. As I will illustrate later in this Chapter, it is possible
to define alternative versions of Eval in non-standard Optimality
Theories where lower-ranked constraints can be more relevant than
a higher ranked one based on their weights or violations.

Crucially, these three components are universal, i.e., they work the same
in every language. The only language-specific aspect of an Optimality
Theoretic grammar is the constraint hierarchy.
How does this work in practice? This question is best answered by
looking at an example of the basic workings of Optimality Theory by
Grimshaw and Samek-Lodovici (1998), regarded as a classic model in the
introduction to the use of the framework in syntactic theory by Legendre
(2001), and finally revised in Legendre (2019). Optimality Theory itself
was developed (Smolensky and Prince 1993) within phonological theory,
but in these pages I will only focus on its syntactic derivations. The
version of the constraints and linguistic examples discussed in the next
paragraph is the latest one by Legendre (2019).

4.1.2 Optimality Theory in practice

A linguistic phenomenon often mentioned in textbooks is that languages
allowing for Topic-referring subjects to be dropped also require null ex-
pletives with weather verbs (as in (1)), while languages with compulsorily
overt subjects require overt expletives with weather verbs (as in (2)).

(1) Italian
a. (Lui/Lei) ha mangiato tre panini.
b. (*Esso) piove.

(2) English
a. *(She) has eaten three burgers.
b. *(It) rains.

In order to account for the difference between Italian and English with
respect to their treatment of expletives, as shown in (1-b) and (2-b)
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respectively, linguists attempting to model it within Optimality Theory
have to individuate the relevant constraints populating Con and to set a
conflict between them, i.e., to define them so that satisfying a constraint
entails violating another.
In this case, only the two constraints in (3) are at play. In particular, Subject
(3-a) is the re-working of the Extended Projection Principle (Chomsky
1982) as a markedness constraint, while Full-Int (3-b) is a faithfulness
constraint capturing the Principle of Full Interpretation (Chomsky 1991).

(3) a. Subject: The subject surfaces in SpecTP.
b. Full-Int(erpretation): Lexical items contribute to the interpre-

tation of a structure.

Subject and Full-Int are in conflict in the case of zero-argument verbs
(such as weather verbs) because satisfying the former requires the use of
an overt expletive, which is forbidden by the latter, while satisfying Full-
Int requires a null expletive, which goes against Subject. No sentence can
possibly satisfy both constraints at the same time. Conflicts in Optimality
Theory are solved by re-ranking the constraints based on the violations
each competing candidate incurs into.
Let us discuss the tableaux for Italian and English weather verbs, in Table
4.1 and Table 4.2 respectively, where the competition between candidates
and its outcome are made explicit.

Table 4.1:Optimality Theoretic tableau for
weather verbs in Italian.

pioverev[present] Full-Int Subject
a. EXPL piove *!

+ b. piove *

Table 4.2: Optimality Theoretic tableau
for weather verbs in English.

rainv[present] Subject Full-Int
+ a. EXPL rains *

b. rains *!

The input to syntactic optimization in Optimality Theory contains only
the relevant semantic information (lexical items, argument structures, and
tense specifications), and all competitors share the same semantic content.
In our case, the input contains the verb, its tense, and no argument
structure since weather verbs have no thematic arguments. Crucially,
the expletive subject is not part of the input. Instead, it is supplied to
a candidate output by Gen, the Generator function mapping the input
to the set of all possible candidates to the optimization, i.e., mapping
the propositional content of the input to all possible surface forms in
the output. The resulting set comprises two candidates, one with an
expletive subject (in 0.) and one without (in 1.). As explained above,
candidates with an expletive subject violate Full-Int and subject-less
candidates violate Subject. In the tableaux, an asterisk marks a single
violation of a constraint, an exclamation mark after an asterisk marks
a fatal violation (i.e., a violation excluding the candidate from further
evaluation), the pointing finger indicates the optimal candidate, and
constraints are ordered so that each constraint dominates the one to
its right. Given the typology sketched in (1-b) and (2-b), an Optimality
Theoretic analysis of Italian and English leads to the conclusion that the
difference between the two languages with respect to zero-argument
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verbs results from the different ranking of two universal constraints,
Full-Int and Subject (as shown in the tableaux Table 4.1 and Table 4.2).
An explanation of the behavior of weather verbs in Italian and English, as
well as a broader account of the typology in (1) and (2), is not something
that can happen only under Optimality Theory. For instance, Principles-
and-Parameters theory (Chomsky 1981) accounts for thedifferent behavior
of Italian and English with the Pro-Drop parameter, so that Italian is a
[+pro-drop] language and English is a [-pro-drop] language. In such a
framework, inviolable, fixed parameters determine the grammaticality
of a linguistic structure in a given language. Optimality Theory on
the contrary, as "a formal theory of constraint interaction in Universal
Grammar" (Legendre 2001) relies on violable, re-rankable constraints to
determine grammaticality. Most importantly, grammaticality is assigned
to a linguistic structure as the outcome of a competition among several
candidates, instead of being a property of that linguistic structure taken
on its own. This is a crucial aspect of Optimality Theory that makes it a
suitable framework for my analysis of the implicit object construction,
even though standard Optimality Theory suffers from problems that are
best solved by other variants of the same framework.

4.1.3 Impossible violation profiles

To explain the nature of these problems, I will start with an example.
Let us say that we collected a small set of data from a language, that we
wanted to model the distribution of these data using three theory-driven
constraints, and that these data presented the constraint violation profiles
represented in Table 4.3, Table 4.4, and Table 4.5.

(a) candidate set: Constr. 3 Constr. 1 Constr. 2
+ candidate A * *

candidate B ***

Table 4.3:Hypothetical Optimality Theo-
retic tableau for mock data by Kuhn (2002)

(b) candidate set: Constr. 1 Constr. 2 Constr. 3
+ candidate A’ *

candidate B’ *

Table 4.4:Hypothetical Optimality Theo-
retic tableau for mock data by Kuhn (2002)

(c) candidate set: Constr. 1 Constr. 2 Constr. 3
+ candidate A” *

candidate B” *

Table 4.5: Hypothetical Optimality Theo-
retic tableau for mock data by Kuhn (2002)

It is evident that this model of our mock data is unfeasible, considered
that in any given language the constraints have to be ordered consistently
(under the assumption of strict dominance). However, in the model above
this does not happen, since Table 4.3 is a ranking argument for Constr. 3
� Constr. 1 and Constr. 3� Constr. 2, while Table 4.4 and Table 4.5
are ranking arguments for the opposite.
It is possible that these constraints have to be ditched in favor of a whole
new set of constraints, but let us say that they are very well motivated
by the literature on the topic and that there is no reason in linguistic
theory to doubt their effect on the grammaticality of these data. Another
possible solution to the inconsistencywould be to introduce an additional
constraint, Constr. 4, which would be ranked higher than all the others
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and violated only by candidate B. Provided we could indeed find such
a constraint, this would lead to a situation where all the candidate sets
from this hypothetical language are consistent with the ordinal constraint
ranking Constr. 4� Constr. 1� Constr. 2� Constr. 3. Yet, Constr.
4 may be weakly grounded in the linguistic theory and thus a poor
choice for a constraint in an Optimality Theoretic analysis. Remember
that constraints are assumed to be part of Universal Grammar, and they
have to be ranked consistently within a given language. What if Constr. 4
is found to be incompatible with newer data from the same hypothetical
language considered above? The quest to find an additional suitable
constraint could continue, but the same problem would surface again
and soon lead to an unmotivated number of constraints. I will provide
a possible solution to this problem (and discuss its shortcomings) in
Section 4.2.

4.1.4 Why standard OT is a bad fit for a model of object

drop

I will now focus on a feature of standard Optimality Theory that, while
not being a worrying issue per se, may become a problem for those using
it to model a phenomenon as complex as the implicit indefinite object
construction. Let us see why.
Linguists adopting standard Optimality Theory to perform their analyses
of syntax (and other aspects of grammar) rely on binary grammaticality
judgments. As illustrated above, given a set of candidates competing for
optimality, the optimization yields only one optimal candidate, which
is the only candidate deemed grammatical, while all the others are
equally ungrammatical regardless of the number or ranking of constraint
violations they incurred into. Now, considering the phenomenon exam-
ined in this dissertation, a traditional Optimality Theoretic approach to
modeling the grammaticality of the implicit object construction (such as
the one proposed by Yankes (2021 [2022])) would only account for an
oversimplified typology such as the one in (4).

(4) a. John sang.
b. *John built.

Such an account would perfectly describe a world where the linguistic
factors presented in Chapter 3 make some object-less sentences with
transitive verbs fully grammatical (as in (4-a)) and other ones fully
ungrammatical (as in (4-b)).However, the actual scenario ismore complex.
For instance, a classic Optimality Theoretic analysis of object drop would
not capture the different grammaticality of the sentences in (5), even
though the literature suggests the imperfective sentence should be at
least slightly more acceptable than the sentence in the perfective aspect.
Similarly, it would fail to model cases such as (6), where neither candidate
is fully grammatical, making it weird, if not altogether wrong, to declare
an optimal candidate.

(5) a. John had eaten.
b. John was eating.
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(6) a. *John built.
b. ?John was building again.

Example (7) is the one used by Medina (2007, p. 62) to make the point
that, crucially, the grammaticality of indefinite object drop varies not only
within a group of candidates featuring the same verb, but also across
verbs.

(7) a. Jack ate.
b. *Jack found.
c. ?Jack caught.

Standard Optimality Theory fails to capture all of these observations in a
viable model of indefinite object drop. I will discuss possible solutions
to this problem in Section 4.2.2 and focus on the one I will use for
my experiments in Section 4.2.4 and Chapter 5. In particular, I will
make it clear that a model is necessary which accounts for nuanced,
gradient effects —a goal that is unattainable within the realm of standard
Optimality Theory.
Indeed, the standard Optimality Theoretic model of indefinite object
drop in English conceived by Yankes (2021 [2022]) suffers from these
exact problems. The author acknowledges the concerns relative to the
glaringly obvious gradient grammaticality of the implicit indefinite object
construction, but dismisses them by simply stating that whenever his
model chooses the null-object candidate as a winner over the overt-
object candidate, this has to be interpreted as a possibility available
in the grammar, rather than a strict imposition. On the contrary, he
argues that the grammar would never allow for object drop in all the
cases where the winner is the overt-object candidate. This explanation
serves well a model entrenched in standard Optimality Theory, but, to a
closer analysis, it appears to be an attempt to have it both ways. Given
the existence of well-known strategies to model linguistic phenomena
showing unmistakable gradient grammaticality (bothwithin andwithout
the realm of Optimality Theory, as discussed in Section 4.2), it makes little
sense to resort to a theory of grammarwhere only onewinner candidate is
possible, only to admit unquantified gradience in some cases. The author
claims to be "seeking to apply the concepts of Optimality Theory to a new
space", perhaps laying "the groundwork for a more rigorous overhaul
in the future", but in doing so he overlooks the gradient, probabilistic
model of indefinite null objects in English devised by Medina (2007)
within the framework of (stochastic) Optimality Theory. The choice
to dismiss probabilistic approaches to grammar in favor of standard
Optimality Theory is all the more puzzling if one considers that Yankes
(2021 [2022], p. 80) ranks the constraints based on the effect size of the
corresponding linguistic features found in the preliminary statistical
analysis he performed on the results of his behavioral experiment, then
manually fiddling with the constraint ranking to account for several
mistaken predictions of the model (Yankes 2021 [2022], pp. 84–90).
I will come back to Medina’s solution to the problems of probabilistic
constraint re-ranking and the gradient grammaticality of indefinite object
drop in Chapter 5.



58 4 Towards a Stochastic Optimality Theoretic account of indefinite object drop

4.2 Weighted approaches to constraint ranking

4.2.1 Harmonic Grammar

Let us forgo standard Optimality Theory and try replacing ranked or-
dinal constraints with numerically weighted ones, to avoid resorting
to additional constraints and solve the problem of having impossible
violation profiles. This was actually the strategy employed by the his-
torical precursor of Optimality Theory, Harmonic Grammar, sketched
out by Legendre, Miyata, and Smolensky (1990, 1991) and Smolensky,
Legendre, and Miyata (1993), and later discussed in the light of Opti-
mality Theory by Legendre, Sorace, and Smolensky (2006) and Pater
(2009). Harmonic Grammar was created as an attempt to bridge the
apparently insurmountable gap between generative grammar, which is
a formal model of existing languages, and linguistic models based on
connectionism, which are instead models of cognition translating the
patterns of neural activity into mathematical functions. Most importantly,
there is no notion of constraint ranking in Harmonic Grammar, so that
their ordered depiction in the tableaux has no bearing on the model itself.
In practice, Harmonic Grammar models assign a non-negative numerical
weight to each constraint, each candidate gets a negative score for each
violation of a constraint or a positive score for each satisfaction (unlike in
Optimality Theory), and the harmony of each candidate is computed as
in Equation 4.1.

� =

 ∑
:=1

BkFk (4.1)

Given a set of : constraints, sk is the violation score of a candidate and
wk is the weight of a constraint. The only candidate deemed grammatical,
i.e., the winner of the competition for optimality, is the most harmonic in
the candidate set. Unlike in Optimality Theory, where strict domination
determines that the violation of a higher-ranked constraint is always
worse than the violation of a lower-ranked constraint, the weighting
of constraints in Harmonic Grammar makes it possible to model the
cumulative effect of multiple violations of a constraint (see Table 4.6).
Let us look at some made-up examples in Table 4.6, adapted from
Example 7 in Kuhn (2002) to conform to Harmonic Grammar symbolism.
Unlike tableaux in Optimality Theory, Harmonic Grammar tableaux have
an additional row for the constraint weights and an additional column
for the harmony scores of candidates. The starting weights assigned to
the three constraints in the examples below do not determine a reliable
model, since they are compatible with the candidate sets (a) and (b), but
not with (c), where candidate B results more harmonic than candidate
A. Based on Equation 4.1, the harmony of each candidate is computed
by multiplying each violation score by the weight of the corresponding
violated constraint (e.g., -1*4 = -4 and -1*1 = -1 in (a)) and then, by
summing up these partial results (in (a), -4 + (-1) = -5). Within a tableau,
the grammatical candidate is the most harmonic, i.e., the one with the
highest harmony value (in (a), this is candidate A, since -5 is greater
than -9). Thus, the starting weights are incompatible with (c), where the
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1: Backpropagation is a resource-intensive
training algorithm. Linear Optimality The-
ory, a later update of Harmonic Gram-
mar by Keller (2000, 2006), determines
constraint weights using instead standard
Least Square Estimation (and only mod-
els violations, not satisfactions, of con-
straints).

grammatical candidate has a lower harmony score than the other one
(since -3 is less than -1).

(a) candidate set:
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+ candidate A -1 -1 -5

candidate B -3 -9

(b) candidate set:
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+ candidate A’ -1 -3

candidate B’ -1 -4

(c) candidate set:
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4 3 1
??? + candidate A” -1 -3

candidate B” -1 -1

Table 4.6:Hypothetical Harmonic Gram-
mar tableaux for mock data, adapted from
Kuhn (2002)

The optimization process in this Harmonic Grammar model of our mock
data has to continue, by means of updating the weight of each constraint
via backpropagation1 until the model converges on a consistent represen-
tation of linguistic data. Interested readers who want to try their hand at
this will find that the intended configuration would be F1 = 6, F2 = 4, F3
= 5. At first glance, it would indeed seem that a simple computation saved
us the trouble of coming up with unmotivated constraints, and yielded
the intended model of our linguistic data. However, as Kuhn (2002) puts
it, a weighted-constraint theory has an "undesiderable property" for the
linguist trying to model typologically realistic languages with linguisti-
cally motivated constraints. Indeed, in Harmonic Grammar, the linguistic
motivation of a set of constraints risks being trivial, since it is always
possible to bend the weight set until the model accomodates all data,
regardless of the constraints used in the model. A severe consequence
of this state of affairs is that Harmonic Grammar (or any other version
of an Optimality Theoretic-like grammar with weighted constraints)
overgenerates data, namely, it predicts both possible and impossible
languages (Legendre, Sorace, and Smolensky 2006; Pater 2009).
Harmonic Grammar, at least in its original formulation, is a very pow-
erful connectionist tool, but a poor model of the actual typology of
human languages. Smolensky and Prince (1993, p. 216) thus conclude
that "recourse to the full-blown power of numerical optimization is not
required", a concept that has become famous among linguists in its witty
form "grammars don’t count", and further explored in Smolensky (2006).
Optimality Theory was then developed as a more restricted, linguistically
motivated spawn of Harmonic Grammar, replacing weighted constraints
with constraints ranked according to strict dominance. Optimality Theory
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2: For observations on the importance
of gradient acceptability judgments for
linguistic theory beyond Optimality The-
ory, as well as some words of caution
pertaining their validity, please refer to
Bornkessel-Schlesewsky and Schlesewsky
(2007), Juzek and Häussler (2019), Lau, A.
Clark, and Lappin (2017), Rimmer (2006),
Schütze (1996 [2016]), and Sprouse (2007).

3: Mean acceptability ratings obtained
via a magnitude estimation experiment
(Bard, Robertson, and Sorace 1996) involv-
ing nineteen native speakers of English.

is the last step in the path towards symbolic functions and representa-
tions that started with fully numerical neural networks and continued
with functionally numerical but representationally symbolic Harmonic
Grammar. It is important to observe that the weighting-to-ranking shift
still has a clear mathematical meaning, which becomes apparent if one
were to recast an Optimality Theoretic analysis in an Harmonic Gram-
mar fashion. From this perspective, strict dominance can be seen as the
result of exponential weighting of the constraints (so that no violation
profile can exist where a lower-ranked constraint outranks a higher-
ranked constraint), making Optimality Theory "a very specialized kind
of Harmonic Grammar" (Prince and Smolensky 1993 [2008]; Smolensky
and Prince 1993). Thus, Optimality Theory is the actual intended link
between generative grammar and neural computation, being a formal
theory of constraint interaction (i.e., Universal Grammar) grounded in
empirical observations about language and connectionist math. However,
neither Harmonic Grammar nor standard Optimality Theory are the
most suitable framework to model gradient judgments about the implicit
object construction.

4.2.2 Going gradient

As argued in Section 4.1.4, a phenomenon as complex as indefinite object
drop can’t possibly be described by means of binary grammaticality judg-
ments. Gradient judgments2 have to be collected instead, and a suitable
linguistic model has to be created to account for gradient grammaticality.
A first attempt to bridge the gap between the resources of standard Opti-
mality Theory and the need for finer-grained acceptability judgments
was made by Keller (1997). In this work, the assumption of standard Opti-
mality Theory that all non-optimal candidates are equally ungrammatical
is dropped, in favor of an extended version of the framework where the
grammaticality of each candidate is formulated in terms of its relative
rankwith respect to its competitors. While in standard Optimality Theory
grammaticality equates to global optimality over the whole candidate set,
in Extended Optimality Theory it equates to local optimality with respect
to a subset of the candidate set (aptly named "suboptimality"). Extended
Optimality Theory thus establishes a grammaticality hierarchy among
the candidates, and this predicted hierarchy can be evaluated against
empirical data, i.e., graded acceptability judgments.
Let us look at an example from Keller’s experiment on the effect of defi-
niteness and verb class on extraction from verbs (Keller 1997, pp. 10–12).
The acceptability judgments he obtained3 for the sentences in (8) show
that extraction from take-type verbs is more acceptable than extraction
from destroy-type verbs, that the extraction of indefinite arguments is
more acceptable than the extraction of definite arguments, and that verb
class has a stronger effect than definiteness on grammaticality.

(8) a. Which man did you take a picture of? 49.39
b. Which man did you take the picture of? 43.74
c. Which man did you destroy a picture of? 41.01
d. Which man did you destroy the picture of? 36.94

The Extended Optimality Theoretic tableaux representing the violation
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4: When a constituent moves in a syntax
tree, chains are the combination of the
moved copy and the trace it leaves behind.

profiles of these candidates is in Table 4.7. Keller (1997) bases his choice
of constraints on Diesing (1992), Legendre, C. Wilson, et al. (1995), and
Legendre, Smolensky, and C. Wilson (1998), which I won’t discuss here
in full length due to space constraints. The Barn constraints are an
implementation of the MinimalLink family of constraints, which requires
chain links4 to cross a minimal amount of barriers (see Chomsky (1993)
for a full explanation of the Minimal Link Condition, according to which
syntactic movement has to target the closest potential landing site). Bar
has a counter for each time a barrier gets crossed. SubCat requires instead
that subcategorization requirements be met. The syntactic representation
of each candidate in Table 4.7 followsdirectly from the theory of extraction
by Legendre, C. Wilson, et al. (1995) and Legendre, Smolensky, and C.
Wilson (1998), and from the theory of definiteness by Diesing (1992),
which requires that [-creation] verbs such as ’to destroy’ subcategorize for
a definite NP. M is a mapping operator correlating with the definiteness
feature, and it turns the projection it adjoins to into a barrier formovement
(more on this in Keller (1997, p. 11) and literature referenced hereby).
Let us comment the violation profiles in the tableau. All candidates
violate Bar1 once because the chain 〈" j , #%j〉 crosses the barrier VP.
The chain 〈which mani , Ci〉 crosses only VP in candidate (a), resulting
in another violation of Bar1, while it crosses both VP and IP (made into
a barrier by M) in candidate (b), resulting in a violation of Bar2. Keller
(1997) comments that the additional violation of Barn candidates (c) and
(d) incur into is due to the fact that barrierhood correlates with feature
selection, so that a definiteness feature requirement on the verb turns it
into an additional barrier for the movement. Candidate (c) also violates
SubCat because the [-creation] verb subcategorizes for an indefinite NP.

Qi [NPSubj V [NPPict xi[+wh]] Ba
r

Su
bC

at

Bar

3 2 1
+a. [CP which mani did [IP you [VP Mj [VP take

[NP j [-def] a picture of ti[+wh]]]]]]
**

b. [CP which mani did [IP Mj [VP you [VP take
[NP j [+def] the picture of ti[+wh]]]]]]

* *

c. [CP which mani did [IP you [VP Mj [VP destroy[+def]
[NP j [-def] a picture of ti[+wh]]]]]]

* * *

d. [CP which mani did [IP Mj [VP you [VP destroy[+def]
[NP j [+def] the picture of ti[+wh]]]]]]

* *

Table 4.7: Extended Optimality Theory
tableau relative to the examples in (8),
from Keller (1997, p. 12).

The constraint ranking in Table 4.7 is compatible with the grammaticality
judgments in (8). Supported by empirical data, this Optimality Theoretic
analysis does more than yield a single optimal candidate. As a matter of
fact, it predicts a grammaticality hierarchy by exploiting evidence from
the optimal candidate and the suboptimal ones alike. Candidate (a) is the
optimal candidate, the one which would stand out as the only winner in
a standard Optimality Theoretic analysis. Candidate (b) is suboptimal, in
that it violates a higher-ranked constraint than (a), but it still performs
better than (c). The same goes for candidates (c) and (d), each showing
decreasing degrees of optimality based on their violation profiles.
An important consequence of predicting suboptimality in place of plain
optimality is that such an analysis makes a stronger case for a given
constraint ranking, given that re-ranking a constraint may not affect
the optimal candidate, but it may have visible effects on suboptimal
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5: Sprouse (2007) discusses experimen-
tal evidence where human participants
to magnitude-estimation experiments ac-
tually enact a "spontaneous imposition
of a categorical distinction on a continu-
ous rating scale", apparently supporting
a categorical approach to grammatical-
ity. However, this result is not found in
dozens of other experiments in the same
vein, meaning that while it is possible for
a gradient scale to be flattened onto a bi-
nary opposition, it is never the case that a
categoricity-oriented study captures more
information than a gradience-oriented one.
Indeed, researchers should heed the ad-
vice by Bornkessel-Schlesewsky and Schle-
sewsky (2007) to be wary of overinterpre-
tating "enticing" gradient data, but the
point still stands that strictly binary ac-
counts, especially if based on the introspec-
tion of a single linguist, just replicate the
findings of graded-scale experiments for
uncontroversial phenomena (Bader and
Häussler 2010; Linzen and Oseki 2018),
while limiting the understanding of phe-
nomena involving subtle differences in
grammaticality (Keller 1998b).

candidates. For instance, re-ranking SubCat over Bar3 in Table 4.7 would
not affect the optimality of candidate (a.), but it would wrongly make
candidate (d.) more suboptimal than (c.). Thus, Extended Optimality
Theory leverages the same features of the standard framework, but is also
able to detect otherwise hidden re-rankings and to include finer-grained
grammaticality judgments in the linguistic analysis.
Nevertheless, while this extension of the original framework makes it
possible for syntacticians tomodel non-binary grammaticality judgments,
it does not go beyond the assumption of strict domination among con-
straints.Moreover, even though graded grammaticality judgments are col-
lected from native speakers and averaged to evaluate the (sub)optimality
of candidates, these numerical values have only ordinal meaning. In
other words, they are used to rank the candidates according to their
grammaticality, but they have no other use. As a result, in Extended
Optimality Theory the gradience of grammaticality actually stems from
discrete, not continuous, values.

4.2.3 Probabilistic grammar

Looking at the bigger picture of what rippled through linguistics at
the turn of the century, awareness of the aforementioned issues with
Optimality Theory (and its precursor, and its early extension) went hand
in hand with a growing discontent with the many limits of traditional
linguistic theories based on categorical definitions and binary judgments.
The road that took linguists from a categorical view of language to
modeling gradient grammaticality was a long, bumpy one. Ever since
Chomsky (1957) frowned upon the notion of "probability of a sentence",
categoric linguisticswas assumed to be linguistics tout court, and thwarted
was any attempt to bring linguistics closer to information theory and
other computation-savvy fields of study. As discussed in Section 4.2.1
and Section 4.2.2, linguistics had to wait several decades for Harmonic
Grammar and then Optimality Theory to acknowledge that computation
can be beneficial to linguistic theory. Most notably, human cognition
entails probability and computation, and modern linguistics is first and
foremost a cognitive science.
In the lively debate on probability in linguistics, Bod, Hay, and Jannedy
(2003) was a pivotal piece of literature, and its chapter on syntax (Man-
ning 2003) created a compelling narrative of the need for probabilistic
grammar, heralding a new season of theoretical (M. Crocker and Keller
2006; Sprouse 2018; Wasow 2007), experimental (Alexopoulou and Keller
2006; Brehm and Goldrick 2017; Bresnan, Featherston, and Sternefeld
2007; Bresnan and Hay 2008; Bresnan and Nikitina 2008; Keller and
Sorace 2003; Sorace and Keller 2005; Sprouse 2015), and computational
(Turney and Pantel 2010) studies. The main take-home message from
Manning (2003) is that categorical accounts of grammar flatten the
gradience of grammar by reducing it to an all-or-nothing pattern and
underplay complexity as anecdotal observations or "exceptions", whereas
probabilistic frameworks can indeed account for the full range of empiri-
cally observed gradience5 while still being consistent with traditional
categorical models. Considering the meaning of probability, this is not
surprising at all. In fact, the probability of an event is quantified on a
continuous numerical scale ranging from 0 (i.e., impossible) to 1 (i.e.,
certain). Categorical accounts only work with the extreme values of the
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6: The paper deals with phonology in par-
ticular, but the same conclusions can be
easily drawn for syntax.

probability scale, so that under such a model, a linguistic event can only
be either impossible (or ungrammatical) or certain (or grammatical). In
this case, grammar is conceived as a set of rules to sift out impossible
or ungrammatical utterances, and allow grammatical ones. Under a
probabilistic model of grammar, on the other hand, the probability of a
linguistic event (such as an utterance being produced by a speaker, or a
sentence being judged grammatical) can assume any value on the scale,
and grammaticality can indeed be modeled as a gradient phenomenon.
In this case, there are no rules in the traditional sense, but only soft
probabilistic constraints. Moving from categorical to probabilistic models
of grammar has been equivalent to a paradigm shift in linguistics, and it
has allowed linguists to create far better explanations of what was hastily
dubbed "an exception" in the past.
A famous example of a phenomenon whose modeling vastly benefited
from this change of perspective is the distinction between arguments and
adjuncts, which has been considered binary ever since Tesnière (1959
[2015]), shifted to a 3-waydistinction later on (Aldezabal et al. 2003;Dowty
2003; Van Valin and LaPolla 1997; Villavicencio 2002), until linguists,
picking up Vater’s (1978) intuition, moved to a graded-argumenthood
approach (Cennamo and Lenci 2019; Kim, Rawlins, and Smolensky 2018,
2019; Kim, Rawlins, VanDurme, et al. 2019). This thesis aims to be a useful
extension to the debate on transitivity, another linguistic phenomenon
that has been considered binary (or binary-with-exceptions) for a long
time. The utterly positive trade-off between renouncing categorical gram-
mar accounts and adopting probabilistic models has been demonstrated
time and again by the experimental literature on the matter, and a math-
ematical proof of the consistency of Stochastic Optimality Theory with
the standard framework has been recently provided by Magri (2018)6 .
Advocating for probabilistic approaches to syntax, in particular with
respect to the shortcomings of Optimality Theory I discussed in Section
4.1.4, several linguists developed their own solutions in the late ’90s
and early ’00s (Alexopoulou and Keller 2006; Boersma 2004; Boersma
and Hayes 2001; Davidson and Goldrick 2003; Keller 1998a, 2000, 2006;
Sorace and Keller 2005). The common feature underlying all these refor-
mulations of Optimality Theory is that, by dropping the assumption of
strict domination made in standard and Extended Optimality Theory,
the gradient grammaticality of a candidate is defined as a function of the
number and type of constraint re-rankings returning it as optimal. These
models all allow for the re-ranking of constraints under an Optimality
Theoretic lens, based on different algorithms andmathematical functions.
How does this work in practice? For simplicity’s sake, in Section 4.2.4 I
will focus only on the traditional version of Stochastic Optimality Theory
(Boersma et al. 1997; Boersma andHayes 2001), which is not only "the best
motivated and most thoroughly probabilistic extension to Optimality
Theory" (Manning 2003, p. 25), but also the one directly inspiring the
model of indefinite object drop by Medina (2007), which I will present in
Chapter 5.

4.2.4 The floating-constraint approach and Stochastic

Optimality Theory

In the previous Sections, I demonstrated with examples from the lit-
erature the shortcomings of standard Optimality Theory (discussed in
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Section 4.1) and its precursor, Harmonic Grammar (discussed in Section
4.2.1). Wrapping up, these theories of grammar are unable to deal with
candidate sets where each candidate is assigned a gradient grammat-
icality score on a continuous scale, yielding instead a single optimal
candidate and several equally ungrammatical ones. Even the extended
version of Optimality Theory by Keller (1997) (presented in Section 4.2.2),
although admitting degrees of suboptimality, still assumes strict domina-
tion among constraints, and makes use of grammaticality scores just to
give the candidates an ordinal rank.
Let us discuss Stochastic Optimality Theory (Boersma et al. 1997; Boersma
and Hayes 2001), which deals with the aforementioned problems in a
way that is particularly suitable for modeling phenomena such as the
indefinite object construction, i.e., employing floating constraints instead
of a fixed ranking as in Standard Optimality Theory. The application
of Stochastic Optimality Theory to this particular topic of interest by
Medina (2007), upon which I will build my own model of object drop in
English and Italian (defined in Chapter 9), will be discussed separately
in Chapter 5.
First of all, let us visualize the fixed ranking of three hypothetical con-
straints in an Optimality Theoretic model, as shown in Figure 4.1.

Figure 4.1: Fixed constraint ranking. Constraint 1� Constraint 2� Constraint 3

Stochastic Optimality Theory takes the constraint ranking idea to the
next level by putting them on a continuous, numerical scale, as shown
in Figure 4.2. This first step makes it clear that, in the example I am
discussing, Constraint 1 and Constraint 2 are closer together than
Constraint 3 is to either of them, so it is possible that the relative ranking
of Constraint 1 and Constraint 2 is not as strict as the (lower) ranking
of Constraint 3.

Figure 4.2: Fixed constraint ranking, but
on a continuous scale.

high-ranked low-ranked

Con. 1 Con. 2 Con. 3

Now, the model has to implement a way to deal with gradient gram-
maticality, solving the many issues standard Optimality Theory has
with modeling the implicit object construction (debated in Section 4.1.4).
Stochastic Optimality Theory achieves this result bymeans of the Gradual
Learning Algorithm, which is intended to be an improvement on the
Constraint Demotion algorithm (Tesar and Smolensky 1993) used in
standard Optimality Theory. Building a Stochastic Optimality Theoretic
grammar is a sensible choice for linguists dealing with any phenomenon
where a given input generates candidates with no unique winner, such
as language change (with different winners at different times in history),
language development (with different winners at different times in the
child’s life), and complex synchronic phenomena such as indefinite object
drop (with different winners at the same time, based on the interaction
of the semantic, aspectual, and pragmatic factors listed in Chapter 3).
Stochastic Optimality Theory allows more than one candidate to be opti-
mal at the same time by allowing constraints to "float" on the continuous
scale, as if perturbed by numerical noise at the moment of evaluation.
In practice, this is possible by assigning to each constraint a full range
of values, centered on what was previously a single point on the scale
(now called "ranking value"). Given the range of values, the specific value
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7: Let � be the mean value of the distri-
bution and � the standard deviation. The
normal distribution is a function defined
by the equation:
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used at evaluation time is called an "evaluation point". Most importantly,
the constraint ranking ranges are defined as probability distributions,
and distribution overlap determines the probability of two constraints
re-ranking with respect to one another. As illustrated in Figure 4.3 and
Figure 4.4, probability distributions in Stochastic Optimality Theory are
normal distributions. The Gaussian curves are defined by their mean
value, which is the ranking value, and their standard deviation, which
determines how broad the curve is.7 Since all constraints are assigned
the same normal distribution in traditional Stochastic Optimality Theory,
the actual value of the standard deviation (the "evaluation noise") has no
effect on the constraint re-ranking, and it is arbitrarily set at 2 (a different
approach to this matter is provided in Nagy and B. Reynolds (1997)
and W. T. Reynolds (1994)). At evaluation time, the selection point will
occur most probably in correspondence of the ranking value (given the
properties of normal distributions), and its probability steady declines
as its value departs from the center of the distribution (i.e., the ranking
value).
Going back to the simple state of affairs illustrated in Figure 4.2, it is
evident from Figure 4.3 that the floating-constraint model makes it now
possible for Constraint 1 and Constraint 2 to re-rank. In the picture,
Constraint 1 has a ranking value of 6.5 and Constraint 2 a ranking value
of 4, ordered from the higher-ranked to the lower-ranked as in the custom
of Optimality Theory. In particular, as shown by the overlapping curves,
the two constraints re-rank freelywhen the selection points are comprised
between 4 and 6.5, and it is much more probable for Constraint 1 to
outrank Constraint 2 than the opposite (graphically, there is only a small
area where the curve for Constraint 2 is above the curve for Constraint
1, for x values between 4 and 5.25).

Constr. 2Constr. 1
46.5

G

H

Figure 4.3: Constraint re-ranking distri-
bution in Stochastic Optimality Theory
(overlapping constraints).

Instead, Constraint 2 and Constraint 3 never re-rankwith respect to one
another, since their probability distributions in Figure 4.4 never overlap
(ranking values have been randomly assigned in the picture just for the
argument’s sake). In situations such as this, the constraint ranking on a
continuous scale just reproduces the results of the categorical ranking
yielded in standard Optimality Theory, i.e., strict domination.

Constr. 3Constr. 2
28

G

H

Figure 4.4: Constraint re-ranking distri-
bution in Stochastic Optimality Theory
(non-overlapping constraints).

The Gradual Learning Algorithm uses these premises to assign an
empirically motivated ranking value to each constraint, modulating its
outcome based on an error-driven procedure. The full details of how
the algorithm works, which the reader will find in Boersma and Hayes
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(2001), are outside the scope of this chapter. For the purposes of my
dissertation, it is important to note that Stochastic Optimality Theory
provides an optimal environment to create a model of indefinite object
drop. Let us consider a simple example such as (9), where the verb to eat is
used transitively in (9-a) and intransitively in (9-b), and let us ignore the
effect of the many factors influencing object drop (discussed in Chapter
3) for the time being. Both (9-a) and (9-b) are grammatical, but the latter
is judged slightly less acceptable than the former on average by some
hypothetical native speakers of English.

(9) a. John is eating pizza. 7
b. John is eating. 6.5

In our simplifiedmodel of object drop, wewould posit just two conflicting
constraints in the spirit of Optimality Theory (as explained in Section
4.1): *Internal Argument Structure, a markedness constraint penalizing
the presence of an overt direct object in the output, and Faithfulness to
Argument Structure, a faithfulness constraint requiring all the arguments
in the input to be also realized in the output. In a standard Optimality
Theoretic analysis of the candidate set in (9), Faithfulness to Argument
Structure would be ranked above *Internal Argument Structure and
make (9-a) the only winner in the competition, with no reference to the
slight acceptability difference. A Stochastic Optimality Theoretic model
would solve the problem, so that Faithfulness to Argument Structure
would indeed be ranked above *Internal Argument Structure most
of the times, but with a large overlap between the two probability
distributions (see Figure 4.5). Crucially, one constraint outranks the other
only probabilistically, while in the standard Optimality Theoretic model
it would do so in an absolute sense due to strict domination.

Figure 4.5: Constraint re-ranking distri-
bution in Stochastic Optimality Theory
relative to Example (9).

*Int Arg

Faith Arg
G

H

The use of Stochastic Optimality Theory to define a working model of the
implicit object construction, aware of the effect of the factors presented
in Chapter 3 and of the fact that different transitive verbs are differently
prone to be used intransitively, is the topic of Chapter 5.
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Medina (2007) created a Stochastic Optimality Theoretic model of the
indefinite object drop. An implicit object output, generated by Gen on
the basis of the input (Section 5.1), is evaluated against a set of conflicting
constraints (Section 5.3). The constraints stem directly from the set
of object drop predictors chosen by the author (Section 5.2), and get
re-ranked with respect to the verb’s semantic selectivity (Section 5.4),
computed as the Selectional Preference Strength by Resnik (1993, 1996).
The way this model implements a probabilistic ranking of the constraints
(detailed in Section 5.5) ensures not only that both implicit and overt
objects are allowed in the grammar, but also that an implicit object output
has a relative gradient grammaticality across different verbs.

5.1 The input and the output

As I mentioned in Section 4.1, Optimality Theory requires the input
to syntactic optimization to contain the relevant lexical and semantic
components that will be mapped to syntactically well-formed output
forms. Since Medina (2007) defines a model of the indefinite object drop,
her input has to provide all the information necessary to generate the
two outputs in (1):

(1) a. John was writing.
b. John was writing something.

Hence, at the very least, the input will contain a transitive verb with its
complete predicate-argument structure, i.e., a specified subject and an
unspecified object. Since the model does not deal with specified object
drop, the input to the model cannot generate an output with a definite
overt object as in (2). To put it better, Medina (2007, pp. 70–71) observes
that this output may actually be in the candidate set, but it is always
ruled out by a high-ranking faithfulness constraint that keeps output
candidates from containing semantically richer information than in the
input.

(2) John was writing a book.

In addition to this, the input will also feature all the relevant predictors of
object drop used by the author, i.e., semantic selectivity (operationalized
as Resnik’s Selectional Preference Strength), telicity, and perfectivity.
Thus, inputs in Medina (2007) have the form (3):

(3) verb (x,y), x = subject, y = unspecified, SPS = numerical value, [+
Past], [± Telic], [± Perfective]
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1: This is the value of Selectional Prefer-
ence Strength that Resnik obtained by per-
forming the computation over the Brown
corpus of English (Resnik 1996, p. 150),
also reported in Medina (2007, p. 114).

The tense feature is fixed at [+ Past] since the author only modeled past
tenses for consistency, but there is no hard theoretical constraint on this.
In theory, it would indeed be possible to create similar inputs with other
tenses. Looking at a specific case, the input generating the outputs in (1)
would look like (4).

(4) write (x,y), x = John, y = unspecified, SPS = 2.541 , [+ Past], [-Telic],
[- Perfective]

Let us take a closer look at how the three predictors chosen by Medina
are implemented in her model.

5.2 Predictors

5.2.1 Semantic selectivity

Medina (2007) uses semantic selectivity as a measure of the recoverability
of a transitive verb’s direct objects, which the reader will remember being
a major determiner of object drop based on the information discussed in
Section 3.1.1. As a quick recap, I will just note that the recoverability of
a direct object (or, better, of the broad semantic class it belongs to) of a
verb correlates with the grammaticality of sentences featuring that same
verb used intransitively, as in (5).

(5) a. John ate ∅dObj.
−→ The omitted object belongs to the category of Edibles.

b. *John made ∅dObj.
−→ The omitted object can be virtually anything.

In theory, it would be possible to treat the semantic selectivity of a
transitive verb with respect to its direct objects as a binary feature and
be done with it. However, this choice would be quite poor both from
a methodological point of view, since there is no clear-cut criterion
to tell apart recoverable-object and non-recoverable-object verbs, and
from a usability point of view, since binary selectivity would be scarcely
informative with respect to object drop, semantic recoverability being a
gradient notion.
Making use of the experimental literature on the matter, Medina (2007)
decided to operationalize semantic selectivity using the Selectional
Preference Strength measure developed by Resnik (1993, 1996). Resnik
quantifies the selectional preferences of transitive verbs in an information-
theoretical model which encodes semantic selectivity as the relative
entropy between the distribution of WordNet (Beckwith et al. 1991;
G. A. Miller 1995) classes for all the direct objects in a corpus and the
distribution of WordNet classes for the direct objects of a specific verb. I
will discuss the mathematical meaning and the computational details of
Resnik’s Selectional Preference Strength in Section 6.1, where I will also
present an update of his measure I contributed to create (Cappelli and
Lenci 2020), powered by distributional semantics and word embeddings.
Here, I will only point out how suitable Resnik’s measure is for the
purposes of Medina’s model of indefinite object drop. First of all, the



5.2 Predictors 69

Selectional Preference Strength score assigned to a verb is a numerical
value (a non-null positive real number) on a continuous scale, which
it makes it perfect to capture the fact that semantic selectivity is not a
binary variable. In particular, the narrower the selectional preferences of
a verb are (i.e., the more recoverable its direct objects are), the greater
the Selectional Preference Strength of that verb is. Most conveniently for
Medina’s thesis in acquisitional linguistics, whose scope goes far beyond
the coding of computational technicalities, Resnik (1996, p. 150) provides
the Selectional Preference Strength scores computed for 34 English verbs
over the Brown corpus (Kučera and Francis 1967), the CHILDES corpus
(MacWhinney 2000), and human subject norms. While being a limited set
of data, this collection of scores has all the data Medina needed to build
her model of the implicit object construction, and it is still a valuable
resource for anyone looking into models of semantic selectivity.

5.2.2 Telicity

Telicity has been proven to be an important predictor of the omissibility
of direct objects in Section 3.2.1. Medina encodes it as a binary variable,
so that the transitive verbs she tested (Resnik’s 34 ones) are tagged as
either telic or atelic. Doing so, however, is less straightforward than it
may seem at first glance.
Telicity, in its typical interpretation, is a property of predicates, in con-
junction with their grid of arguments and the way they are filled by
linguistic material (Dowty 1979 [2012]; Vendler 1957). This means that
the (a)telicity feature may only be assigned to complete verb phrases,
complete with arguments and adjuncts, and not to bare verb heads (see
the simplified tree in Figure 5.1). Under this view, predicates are telic if
the events they describe have an endpoint (encoded as a direct object),
or they are atelic if they don’t. As a logical consequence, the same verb
would be considered telic when used transitively and atelic when used
intransitively (Mittwoch 1982; Olsen and Resnik 1997).

TP

T’

VP[+telic]

V’

DP

a book

V[+telic]
wrote

T
∅[+past]

DP

John

Figure 5.1: Simplified syntax tree illustrat-
ing the traditional interpretation of telicity
as a property of predicates, not verb heads.

As Medina points out, telicity taking scope over a whole verb phrase
poses a severe problem with respect to the use of telicity as a predictor
of object drop. How can an object-dropping transitive verb be always
considered (a)telic, if the very act of adding or dropping its object alters its
telicity? Medina’s solution to this conundrum makes use of the analysis
of telicity as a privative feature by Olsen (1997 [2014]). Let us discuss this
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2: All the examples in the list are taken
verbatim from Medina (2007, pp. 302–303).

approach in more detail.
According to Olsen (1997 [2014], p. 32), telicity is a semantic feature
verbs have if the event they denote can have an endpoint or a result,
regardless of whether they actually attain it or not. Based on this, [+telic]
verbs cannot lose the feature even if the endpoint is not realized as a
syntactic constituent. On the contrary, atelicity is a cancelable conversa-
tional implicature, so [-telic] verbs can be interpreted as either having
or not having an inherent endpoint or result. To prove this point, Olsen
provides two series of examples (adapted from Olsen (1997 [2014], p. 33)),
reported in (6) and (7). In (6), telicity is shown to be an inherent semantic
property with a non-cancelable marked interpretation, since the addition
of the durative adverbial ’for years’ turns the accomplishments into itera-
tive accomplishments, not into activities (which are [-telic], [+durative]
predicates).

(6) a. Eli won for years.
b. Eli ran to the store for years.

Instead, examples in (7) demonstrate the unmarked nature of atelicity,
based on the assumption that progressive forms of atelic verbs entail the
corresponding perfect form (as in (7-b)), while the same is not true of
telic verbs (as in (7-a) and (7-c)). Thus, it is possible to add material and
disrupt the atelic interpretation (compare (7-b) with (7-c)), but it is not
possible to cancel telicity (as shown in (6-a) and (6-b)).

(7) a. Eli is winning. � Eli has won.
b. Eli is running. � Eli has run.
c. Eli is running to the store. � Eli has run to the store.

Olsen (followed byMedina) actually uses the notation [0 Telic] to indicate
the feature of verbs which lack telic denotation, but in this thesis I will
use a more transparent opposition between [+telic] and [-telic] verbs.
Now informed about the underlying theory (discussed in more detail in
Section 3.2.1), the reader will be able to interpret the [-telic] feature as
Olsen intended.
By virtue of this particular interpretation of telicity, Medina considers
verbs such as to make to be [+telic] and verbs such as to eat to be [-telic].
The author assigns telicity (or lack thereof) to each verb on the basis of
three tests2 .

I The in/for test (Dowty 1979 [2012]; Vendler 1957). Predicates featur-
ing [+telic] verbs, as in (8-a), allow more easily in-X-time temporal
adverbs and less easily for-X-time temporal adverbs, while pred-
icates with [-telic] verbs, as in (8-b), have the reverse preference
pattern.

(8) a. Michelle made some stuff in/*for five minutes.
b. Michelle read *in/for five minutes.

I The almost test (Dowty 1979 [2012]). The adverb almost allows
[+telic] verbs, as in (9-a), to have two interpretations (the event has
begun but has not finished yet; the event has not begun yet), while
[-telic] verbs, as in (9-b), can have only one (the event has not begun
yet).
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(9) a. Tony almost packed.
−→ Tony started packing, but hasn’t finished yet.
−→ Tony was about to pack but hadn’t yet started.

b. Tony almost ate.
−→ Tony started eating, but hasn’t finished yet.
−→ Tony was about to eat but hadn’t yet started.

I The counting test (Bach 1986). It is more acceptable to count [+telic]
predicates, as in (10-a), than [-telic] ones, as in (10-b). In other words,
counted [+telic] predicates are interpreted as a single event with
repeated acts, while counted [-telic] predicates are interpreted as
repeated, distinct events. This is the most controversial test out of
the three Medina chose to use.

(10) a. Edgar opened some stuff three times.
b. Edgar watched three times.

Medina tested her target verbs in combination with an indefinite object or
in an intransitive sentence. A transitive verb tested this way is [+telic] if at
least two tests out of three yield a telic interpretation or [-telic] otherwise,
based on the assumption that the verb lacks telic denotation (i.e., is atelic)
if it can elicit both a telic and an atelic interpretation. As I will discuss
in more detail in Section 6.2, while the in/for test is a largely reliable
diagnostic for telicity, the other two tests are somewhat problematic.

5.2.3 Perfectivity

While telicity (i.e., lexical aspect) is a semantic property of individual
verbs, as illustrated in the previous paragraph, perfectivity (i.e., gram-
matical aspect) in English is morphologically marked. A more detailed
discussion of the effects of perfectivity on the grammaticality of indefinite
object drop is provided in Section 3.2.2.
As noted in Section 5.1, Medina (2007) only modeled inputs in the past
tense. With respect to the morphological markers of (im)perfectivity, the
author followed Olsen (1997 [2014]) in realizing [+perfective] inputs with
perfect morphology, in the form "have + past participle of the verb", as in
(11-a), and [-perfective] inputs with progressive morphology, in the form
"be + verb + -ing", as in (11-b).

(11) a. John had written a book.
b. John was writing a book.

In my own models of object drop (presented in Chapter 9 (Predicting
the grammaticality of implicit objects)), I marked (im)perfective aspect on
English verbs using the same morphology as in Medina (2007), and I
devised a similar strategy for my Italian stimuli (Section 6.3).

5.3 Constraints and their ranking

For each input to the optimization in Medina’s model, the two candidate
outputs (one with an overt object, one with an implicit object, as detailed
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3: In Optimality Theory, constraints are
named after features or linguistic elements
required in the grammar. An asterisk is
added at the beginning of a constraint’s
name if that constraint is violated by the
presence, not the absence, of a particular
feature.

in Section 5.1) are evaluated against the four constraints in (12). Their
labels and definitions are taken verbatim from Medina (2007, p. 72).

(12) a. *Int Arg (*Internal Argument Structure)
The output must not contain an overt internal argument (that
is to say, a direct object).

b. Faith Arg (Faithfulness to Argument Structure)
All arguments in the input must be present in the output.

c. Telic End (Telic Endpoint)
The endpoint of a [+ Telic] event must be bounded by the
presence of an overt argument in the output.

d. Perf Coda (Perfective Coda)
The coda of a perfective event [+ Perfective]must be identified
by the presence of an overt argument in the output.

Let us discuss each constraint more extensively. *Int Arg3 is a marked-
ness constraint belonging to a broader class of economy-of-structure
constraints, *Struc (Buchwald et al. 2002; Hartkemeyer 2000), operating
in syntax and every other domain of grammar. By penalizing candidates
with an overt object, which have a greater degree of syntactic structure
than candidates with an implicit object, *Int Arg is the only constraint
in Medina’s set to favor implicit-object candidates. As I will explain in
Section 5.4, this unique behavior of *Int Arg is not just intended, but
downright necessary for the probabilistic re-ranking of the constraint to
happen.
Faith Arg is a faithfulness constraint requiring that all arguments in the
input be overtly realized in the output, thus penalizing candidates with
an implicit object. As discussed in Section 4.1, faithfulness constraints
are a unique feature of Optimality Theory, created in order to conflict
with economy-of-structure markedness constraints like the framework
requires. Without faithfulness constraints, the optimal candidate would
always be the least marked one, i.e., the one violating the lowest-ranked
constraints (Legendre 2001, p. 3). In the specific case of Medina’s model,
Faith Arg conflicts directly with *Int Arg, determining a state of affairs
that closely resembles the situation previously described in Figure 4.5.
The picture is made more complex by the interaction of two additional
constraints and the inclusion of semantic selectivity in the model.
Finally, the markedness constraints Telic End and Perf Coda are the
Optimality Theoretic implementations of telicity (Section 3.2.1) and per-
fectivity (Section 3.2.2) as predictors of object drop, both penalizing
object-dropping output candidates. Notably, while *Int Arg and Faith
Arg are always active regardless of the input features, Telic End and
Perf Coda are only actively used by the Eval component if the input
is, respectively, [+telic] and [+perfective]. Let us consider the examples
in Table 5.1 to Table 5.4, adapted from Medina (2007). The absence of
the pointing hand indicates that no winner has been chosen among the
candidates, since these examples are just here to illustrate the possible
violation profiles determined by different inputs. In the same spirit, the
dotted lines show that no constraint ranking (neither in standard nor in
stochastic Optimality Theory) has been determined.
A transitive verb which is both telic and perfective, such as to catch in
Table 5.1, has a full constraint violation profile involving all the four
constraints at play in Medina’s model. Instead, the output candidates
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for a telic but imperfective input verb (such as to catch in Table 5.2) only
violate *Int Arg, Faith Arg, and Telic End. In this situation, Perf Coda
is vacuously satisfied, i.e., there is no candidate in the candidate set
with the ability to violate the constraint (given that it is violated by
object-dropping perfective candidates, and here there is none). Similarly,
Telic End is vacuously satisfied in Table 5.3, and both Telic End and
Perf Coda are vacuously satisfied in Table 5.4. In these four tableaux,
vacuously satisfied constraints are marked in light gray for the sake of
clarity. Typically, authors leave them out of their tableaux in Optimality
Theoretic literature.

catch (x,y), x = Jack, y = unspecified, SPS = n/a,
[+Past], [+Telic], [+Perfective] *I
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a. Jack had caught. * * *
b. Jack had caught something. *

Table 5.1:Optimality Theory tableau illus-
trating the constraint violation profile in
themodel of object drop byMedina (2007),
relative to a telic perfective verb.

catch (x,y), x = Jack, y = unspecified, SPS = n/a,
[+Past], [+Telic], [-Perfective] *I
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a. Jack was catching. * *
b. Jack was catching something. *

Table 5.2: Optimality Theory tableau il-
lustrating the constraint violation profile
in the model of object drop by Medina
(2007), relative to a telic imperfective verb.

eat (x,y), x = Jack, y = unspecified, SPS = n/a,
[+Past], [-Telic], [+Perfective] *I

nt
A

rg

Fa
it

h
A

rg

Te
li

c
En

d

Pe
rf

Co
da

a. Jack had eaten. * *
b. Jack had eaten something. *

Table 5.3: Optimality Theory tableau il-
lustrating the constraint violation profile
in the model of object drop by Medina
(2007), relative to an atelic perfective verb.

eat (x,y), x = Jack, y = unspecified, SPS = n/a,
[+Past], [-Telic], [-Perfective] *I
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a. Jack was eating. *
b. Jack was eating something. *

Table 5.4:Optimality Theory tableau illus-
trating the constraint violation profile in
themodel of object drop byMedina (2007),
relative to an atelic imperfective verb.

So far, so good. However, the attentive reader will have noticed that no
mention has been made of object recoverability (quantified via semantic
selectivity) among the constraints at play, even though it has been said to
be a crucial predictor of object drop in Section 3.1.1 and in Section 5.2. As
Medina (2007, p. 76) observes, it would indeed be easy to define an *Overt
Recoverable Object constraint penalizing overt objects occurring with
high-selectivity verbs, or a *Non-recoverable Implicit Object constraint
penalizing implicit objects occurring with low-selectivity verbs. This
works perfectly for binary predictors such as telicity and perfectivity, but
semantic selectivity is not a binary predictor (as noted in Section 5.2.1).
Not only is it quantified by means of a continuous numerical variable,
but it is structurally impossible to define a threshold value separating
high- and low-selectivity transitive verbs.
Yankes (2021 [2022], p. 75) tried to account for the effect of object
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recoverability4 by introducing the faithfulness constraint (penalizing
object-dropping candidates) in (13). However, Yankes merely states that
a candidate violates Info if the verb in the input lacks recoverability
"in sufficient degree", without attempting a more rigorous definition or
quantification of such a degree beyond personal intuition. The blurry
definition of this binary constraint is the only way to make his standard
Optimality Theoretic model of indefinite null objects work, but this
phenomenon has to be accounted for within a gradience-compatible
framework (as argued in Section 4.1.4).

(13) Info(rm): Important, noninferable speech content may not be
omitted.

Let us go back to Medina’s model, and her implementation of recov-
erability via Resnik’s measure of semantic selectivity. In the original
works about a computational model of semantic selectivity as a proxy to
argument recoverability (Resnik 1993, 1996), the author himself observed
that albeit his Selectional Preference Strength measure correlates well
with the acceptability of implicit objects, there are indeed some cases
where a high-SPS verb does not allow for its object to be dropped (e.g., to
hang, to wear). For this reason, as I will detail in Section 5.4, SPS will play
a crucial role in Medina’s probabilistic constraint ranking, despite not
being defined as a constraint per se.
The gradient nature of object recoverability, be it computed via SPS
(Resnik 1993, 1996) or measures such as PISA (Cappelli and Lenci 2020),
makes it a bad candidate for constraint-hood. Moreover, even if it were
possible to binarize it into a viable constraint, it would still suffer from
a problem afflicting all the binary constraints at play, i.e., out-of-range
output generation both within-constraint and across constraints. In other
words, each constraint in the model under- or over-generates outputs
across verbs, since experimental data show that some telic verbs occur
with implicit objects while others do not, that perfective aspect favors im-
plicit objects but does not force them, and so on. This is normal, expected
behavior for classic Optimality Theoretic constraints, easily solved by
means of re-ranking in order to select the winner candidate. However, in
this case the state of affairs is more complicated.
As shown in Table 5.1 to Table 5.4, forcing the implicit object construction
into a standard Optimality Theoretic model (as attempted by Yankes
(2021 [2022])) has two major drawbacks. One is that the same constraint
violations apply to any verb with a given aspectual profile, meaning
that a tableau like Table 5.3 would apply to to eat and to any other atelic
perfective input (since, in standard Optimality Theory, the ranking of
the constraints has to be consistent within the same language). As just
observed, this does not match the actual linguistic data on indefinite
object drop. The second issue with such a model is that it only allows
for a single winner out of a candidate set, so that (also considering
the previous problem) for a given aspectual profile, regardless of the
specific verb in the input, the direct object would be either obligatory, or
obligatorily dropped. Looking again at tableaux Table 5.1 to Table 5.4,
the model would determine which of the two candidates would win
the competition solely based on the relative ranking of *Int Arg with
respect to any of the other constraints (since the relative ranking of Faith
Arg, Telic End, and Perf Coda is irrelevant for the purposes of electing
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a winner). Given that the the felicity of the implicit object construction
depends on the interaction of several factors, and given that no factor or
combination of factors actively forces or prohibits object drop, the logical
conclusion is that a standard Optimality Theoretic model of object drop
fails to meet the speaker’s intuitions.
Taking all of this into consideration, a non-standard Optimality Theoretic
comprehensive model of the implicit object construction based on the
linguistic factors hereby described has to account for two aspects, i.e.,

1. incorporating semantic selectivity (a continuous, non-binary factor)
into the model, and

2. allowing the model to yield outputs with varying degrees of
grammaticality, instead of having a winner and a loser.

5.4 Defining a probabilistic constraint ranking

5.4.1 Introduction

Medina (2007) built such a model under the premises of Stochastic
Optimality Theory, whose tenets were introduced in Section 4.2.4. This
framework accounts for gradient grammaticality out-of-the-box, since
it assigns each candidate a probability of it being the winner, to be
interpreted as a degree of grammaticality. As for the implementation
of semantic selectivity as a continuous factor, Medina came up with a
personal variation on Stochastic Optimality Theory.
As noted in tableaux Table 5.1 to Table 5.4, the winner in a Standard
Optimality Theoretic model is determined based on the ranking of *Int
Arg relative to the other three constraints at play. The same would
hold true for a traditional Stochastic Optimality Theoretic version of the
same model, where all constraints would be assigned a given normal
distribution with a fixed evaluation noise (fully described by its standard
deviation). Medina’s stochastic model obtains the probability of *Int Arg
dominating the other three constraints as a function of the verb’s semantic
selectivity, computed using Resnik’s Selectional Preference Strength
(Resnik 1993, 1996). Compared with traditional Stochastic Optimality
Theory, Medina’s proposal achieves the same goal of having candidates
with gradient grammaticality (instead of a single absolute winner), while
having two advantages:

I implementing semantic selectivity in the model properly, and
I defining the relative ranking of *Int Arg with respect to the

other three constraints as independent computations, yielding
fine-grained interactions of semantic selectivity with telicity, per-
fectivity, and faithfulness to the input.

In such a model, the grammaticality of candidates is assessed across all
possible constraint re-rankings, each of which is assigned a probability
by the model. Medina’s implementation of this model stems from a
three-step logic:

1. the probability of *Int Arg dominating each of the other constraints
is expressed as a function of the input verb’s semantic selectivity,
computed via Resnik’s Selectional Preference Strength;
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5: This notation stands for "n factorial"
and it is equivalent to the number of possi-
ble permutations of the set 1, 2, ..., =, i.e.,
a list of = unique elements. It is computed
as = · (= − 1) · (= − 2) · ... · 1.

6: Expressed as "= permute :", and writ-
ten in the form
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(= − :)!

2. the values of the function are used to compute the relative proba-
bilities of each of the four possible re-rankings of *Int Arg with
respect to the three other constraints at play;

3. these relative probabilities determine the relative probability (and
thus grammaticality) of the implicit object output for a given input,
depending on semantic selectivity and the input’s aspectual type.

In the next Sections, I will explain each step in depth and unveil the
underlyingmathematical processes. Beforedoing this, a brief introduction
to the mathematical premises of Medina’s model is in order.
Let us consider a hypotheticalmodelwith = constraints. These constraints
could be re-ranked in =!5 ways. However, since in the stochastic model of
indefinite object drop the only relevant ranking is that of *Int Arg relative
to the other constraints, the mathemathics involved in the hypothetical
=-constraint model can be simplified considerably. With this restriction,
the constraints in the model can only be re-ranked in = ways, because the
focus is on whether one constraint is in first, second... =th position, while
the order of all the other = − 1 constraints is irrelevant. Mathematically,
this translates into a trivial case of partial permutation of : elements out
of a set of = elements total6 , where : equals one. As stated at the end of
the previous paragraph, the model assigns each constraint re-ranking a
value on the 0-1 probability scale. If all ranking orders in the model are
equally probable, each of them would have a probability of 1

= .
Medina’s stochastic model of object drop employs the four constraints
introduced in Section 5.3, i.e., *Int Arg, Faith Arg, Telic End, and Perf
Coda. Applying the math discussed right before, it follows that these
four constraints can be re-ranked in 24 different ways. Each ranking
selects either an implicit object or an overt object as a winner, based
on the aspectual features of the input. To illustrate this point, Table 5.5
reproduces the summary table fromMedina (2007, p. 89), rearranging the
lines in three different groups to make the reasoning more transparent.

The summary in Table 5.5 follows directly from the definition of the four
constraints in (12) and from the above analysis of tableaux Table 5.1 to
Table 5.4, where it was made evident that *Int Arg favors an implicit
object output, while the three other constraints are violated by such a
candidate. In particular,

1. 6 constraint re-rankings always yield an implicit object output
regardless of the aspectual features of the input, because *Int Arg
dominates Faith Arg (first group in Table 5.5);

2. 12 constraint re-rankings always yield an overt object output re-
gardless of the aspectual features of the input, because Faith Arg
dominates *Int Arg (second group in Table 5.5);

3. 6 constraint re-rankings yield either an implicit or an overt object
output based on the aspectual features of the input (last group in
Table 5.5), i.e., based on the position of *Int Arg relative to the
relevant, non-vacuously satisfied constraints. The relative ranking
of the three other constraints is irrelevant, while the position of *Int
Arg is crucial since it is the only constraint to favor object drop.

In a floating-constraint approach to the issue of creating a probabilistic
model of a linguistic phenomenon, such as Medina’s variant of Stochastic
Optimality Theory, the ratio of re-ranking orders returning a specific
output (in this case, the implicit object output) out of the total number of
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Telic

Perf

Telic

Imperf

Atelic

Perf

Atelic

Imperf

*I� F� T� P implicit implicit implicit implicit
*I� F� P� T implicit implicit implicit implicit
*I� T� F� P implicit implicit implicit implicit
*I� P� F� T implicit implicit implicit implicit
*I� T� P� F implicit implicit implicit implicit
*I� P� T� F implicit implicit implicit implicit
F� *I� T� P overt overt overt overt
F� *I� P� T overt overt overt overt
F� T� *I� P overt overt overt overt
F� P� *I� T overt overt overt overt
F� T� P� *I overt overt overt overt
F� P� T� *I overt overt overt overt
T� F� *I� P overt overt overt overt
T� F� P� *I overt overt overt overt
T� P� F� *I overt overt overt overt
P� F� *I� T overt overt overt overt
P� F� T� *I overt overt overt overt
P� T� F� *I overt overt overt overt
T� *I� F� P overt overt implicit implicit
T� *I� P� F overt overt implicit implicit
T� P� *I� F overt overt overt implicit
P� *I� F� T overt implicit overt implicit
P� *I� T� F overt implicit overt implicit
P� T� *I� F overt overt overt implicit

Table 5.5: Set of 24 possible re-rankings of
the four constraints *Int Arg, Faith Arg,
Telic End, and Perf Coda, with implic-
it/overt object output based on aspectual
features of the input (Medina 2007, p. 89).

rankings can be used as a proxy to the relative frequency of that same
output in a corpus, or to its gradient grammaticality as judged by native
speakers. Going back to the math discussed above, each ranking would
have a 1/24 probability if all of them were equiprobable, making it very
straightforward to compute the probability (and hence, grammaticality)
of an implicit object output for each of the four aspectual types under
examination. Based on Table 5.5, an implicit object output would then be
expected:

1. 25% of the time for telic perfective inputs, since 6 rankings out of
24 favor the implicit object construction,

2. 33% of the time both for telic imperfective inputs and for atelic
perfective inputs (8/24 rankings),

3. 50% of the time for atelic imperfective inputs (12/24 rankings).

However, the model (and the underlying math) has yet to account for
semantic selectivity.

5.4.2 Logical step 1: Re-ranking probability as a function

of semantic selectivity

Earlier in this Section, I observed that Medina’s model of the gradient
grammaticality of the implicit object construction takes full account of
semantic selectivity as a continuous factor, and it also defines the ranking
of *Int Arg with respect to the other constraints independently. The
author achieved this outcome by renouncing the equiprobability tenet
assumed so far, defining instead the probability of *Int Arg being ranked
above each constraint as a function of Resnik’s Selectional Preference
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7: A vertical line (described by the equa-
tion G = :, where : is a numerical con-
stant) is not a function, because the unique
value : from the domain is mapped to
more than one value in the co-domain.

Strength (Resnik 1993, 1996) for each verb. The linguistic reason to do so
lies in the role of semantic selectivity as a predictor of object recoverability
(and, thus, of object omissibility), discussed extensively in Section 3.1.1,
Section 5.2, and Section 6.1. Numerically speaking, the model has to
assign a higher probability (hence, grammaticality) to implicit objects
occurring with verbs having a higher semantic selectivity, all the while
modulating the computation based on the other factors at play.
Stochastic Optimality Theory defines the re-ranking range of each con-
straint in a model as a probability distribution (Section 4.2.4). However,
all constraints re-rank one with respect to another based on the same
function and standard deviation, making it impossible to register the
effect of varying degrees of semantic selectivity. The solution Medina
devised (Medina 2007, p. 94) is to define the probability of *Int Arg being
ranked above any other constraint as a linear function (instead of a fixed
normal curve) whose value is directly proportional to the Selectional
Preference Strength of the verb featured in the input. This way, some
constraints among the 24 in Table 5.5 are more probable than others,
depending on the semantic selectivity of the verb.
Let us look at the underlying mathematics in more detail. A function
5 (G) = H is a relation that maps each element G from the domain set -
to one and only one value H from the co-domain set .. A linear function,
which is the relevant kind of function for the linguistic model under
discussion, has the form H = <G + @ and is represented as a straight, non-
vertical7 line on a plane. In particular, < and @ are numerical constants,
the former representing the slope of the function (i.e., its "steepness" with
respect to the G axis) and the latter indicating the intercept (i.e., the point
where the curve meets the H axis). This is rendered graphically in Figure
5.2, where it is possible to gauge the effects of varying the values of <
and @ on the shape of the curves.

Figure 5.2: Graphical representation of
three linear functions as lines on the Eu-
clidean plane.
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Here, H = G meets the H axis in the origin because @ is null, and it bisects
perfectly the first and third quadrants of the cartesian plane because <
is equal to 1. The curves described by H = 2G + 2 and H = −3G − 5 are
steeper (i.e., H grows/decreases faster than G), because the absolute value
of < is greater than 1, and they meet the H axis at 2 and -5 respectively.
Moreover, H = G and H = 2G + 2 are positive linear functions because
their slope is positive, i.e., H values increase when G values do, while the
opposite holds for H = −3G − 5.
Since any flavor of Optimality Theory requires a conflict between con-
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straints, and since *Int Arg is the one constraint to conflict with all the
others in this account of object drop, Medina’s model defines a linear
function for the pairwise ordering of *Int Arg with respect to Faith
Arg (Equation 5.2), Telic End (Equation 5.3), and Perf Coda (Equation
5.4), for a total of three different linear functions. In general, each func-
tion takes the form in Equation 5.1, where the probability of *Int Arg
being ranked above another constraint is H, (%(8 is G,

�:−�:
(%(<0G−(%(<8= is

<, �: − (%(<8=( �:−�:
(%(<0G−(%(<8= ) is @, and �: and �: are, respectively, the

values the function assumes at (%(<0G and (%(<8= .

?(*Int Arg � con) = �: − �:
(%(<0G − (%(<8=

· ((%(8 − (%(<8=) + �: (5.1)

In particular, the three linear functions at play are the ones in Equation
5.2, Equation 5.3, and Equation 5.4.

?(*Int Arg � Faith Arg) = �1 − �1

(%(<0G − (%(<8=
· ((%(8 − (%(<8=) + �1

(5.2)

?(*Int Arg � Telic End) = �2 − �2

(%(<0G − (%(<8=
· ((%(8 − (%(<8=) + �2

(5.3)

?(*Int Arg � Perf Coda) =
�3 − �3

(%(<0G − (%(<8=
· ((%(8 − (%(<8=) + �3

(5.4)

These functions take positive values in a range of possible values depend-
ing on the verbs’ semantic selectivity.

5.4.3 Logical step 2: relative probabilities of the 4

constraint re-rankings

At the beginning of this Section, it was observed that four constraints
result in 24 possible re-ranking orders (listed in Table 5.5), and that this
large set of permutations actually reduces to just four possible re-rankings
if one only cares for the relative position of *Int Arg. In fact, the model
will favor an implicit object output whenever *Int Arg is ranked above
all the relevant constraints, regardless of their order with respect to
one another. A telic perfective input only results in an implicit object
output when *Int Arg is ranked above the three other constraints, a telic
imperfective input when *Int Arg is ranked above Faith Arg and Telic
End, an atelic perfective input when *Int Arg is ranked above Faith Arg
and Perf Coda, and an atelic imperfective input when *Int Arg is ranked
above Faith Arg alone. This results in the four possible orderings in Table
5.6.
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Table 5.6: Set of the four possible re-
rankings of *Int Arg with respect to Faith
Arg, Telic End, and Perf Coda, these be-
ing unordered with respect one to another.

Telic

Perf

Telic

Imperf

Atelic

Perf

Atelic

Imperf

*I� {F, T, P} implicit implicit implicit implicit
P� *I� {F, T} overt implicit overt implicit
T� *I� {F, P} overt overt implicit implicit
{T, P}� *I� F overt overt overt implicit

The probability of each individual re-ranking ordering in Table 5.6 is
equal to the joint probabilities of the independent pairwise orderings
that comprise it. For instance, the probability of *Int Arg being ranked
above all the other constraints is equal to the intersection (represented
with ∩ in set theory) between the probability spaces of *Int Arg being
ranked above Faith Arg, *Int Arg being ranked above Telic End, and
*Int Arg being ranked above Perf Coda. This is rendered graphically in
the Venn diagram in Figure 5.3, where the probability of *Int Arg being
ranked above all the other constraints is colored in blue.

Figure 5.3: Graphical representation of
the probability of *Int Arg being ranked
above the three other constraints, in cyan
in the Venn diagram.

?(∗� � �)

?(∗� � )) ?(∗� � %)

In summary, the probabilities of the four rankings in Table 5.6 are
computed as in Equation 5.5 to Equation 5.8. Whenever an equation
features the subtraction of the probability of an event from 1, it means
that the computation is taking into account the cases when that event is
not happening, given that probabilities can vary between 0 (impossible
event) and 1 (certain event). For instance, since in Equation 5.6 Faith Arg
ranks above *Int Arg, the partial probability included in the computation
is [1 - p(*Int Arg� Faith Arg)], namely the probability of *Int Arg not
being ranked above Faith Arg.

?(∗� � �, ), %) = ?(∗� � �) · ?(∗� � )) · ?(∗� � %) (5.5)
?(% � ∗� � �, )) = ?(∗� � �) · ?(∗� � )) · [1 − ?(∗� � %)] (5.6)
?() � ∗� � �, %) = ?(∗� � �) · [1 − ?(∗� � ))] · ?(∗� � %) (5.7)
?(), % � ∗� � �) = ?(∗� � �) · [1 − ?(∗� � ))] · [1 − ?(∗� � %)]

(5.8)
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5.4.4 Logical step 3: grammaticality of implicit object

output as sum of probabilities for each aspectual

type

Returning to Table 5.6, the next step consists in determining the proba-
bility of an implicit object output for each of the four aspectual features
in the input (the columns of the table). It is possible to achieve this result
by summing the probabilities of the individual partial orderings where
*Int Arg is ranked above the relevant constraints (the rows of the table).
Thus, the likelihood of the object being dropped for each aspectual type
is computed as in Equation 5.9 to Equation 5.12.

?(implicit)Telic Perfective = ?(∗� � �, ), %) (5.9)
?(implicit)Telic Imperfective = ?(∗� � �, ), %) + ?(% � ∗� � �, )) (5.10)
?(implicit)Atelic Perfective = ?(∗� � �, ), %) + ?() � ∗� � �, %) (5.11)
?(implicit)Atelic Imperfective = ?(∗� � �, ), %) + ?() � ∗� � �, %)+
+ ?(% � ∗� � �, )) + ?(), % � ∗� � �) (5.12)

As stated at the beginning of this Section, in the stochastic model of the
implicit object construction by Medina (2007) these probabilities indicate
the gradient grammaticality of indefinite object drop for each aspectual
type of input.
Atelic imperfective inputs violate a proper subset of the constraints
violated by other aspectual types of input. Hence, also considering Table
5.6 and the probabilities Equation 5.9 to Equation 5.12, it is evident that
the implicit object output is most likely to be grammatical with atelic
imperfective inputs. Following this line of reasoning, it results that telic
perfective inputs have the lowest probability to yield an implicit object
output, and that the likelihood of atelic perfective and telic imperfective
inputs to allow for the object to be dropped is intermediate. The relative
object-dropping probability of atelic perfective inputs with respect to
telic imperfective inputs depends on the parameters of the functions
in Equation 5.2, Equation 5.3, and Equation 5.4. This state of affairs is
depicted in Figure 5.4, an adaptation of the graph provided by Medina
(2007, p. 108).

The curves in Figure 5.4 are cubic functions because the computations
in Equation 5.5 to Equation 5.8 involve the multiplication of the three
linear functions of the type illustrated in Equation 5.1. This means that
the unknown (%(8 (the G of the linear function) gets multiplied three
times by itself, resulting in (%(83, which yields a cubic curve. Of course,
all the parameters in the complex function in Equation 5.1 are part of the
newly created cubic function, but they do not result in a higher grade
(i.e., more than cubic) polynomial function since they are not unknowns
of the function.
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Figure 5.4: Hypothetical representation
of the relationship between semantic se-
lectivity and the probability (as a proxy
to grammaticality) of an implicit object
output in the stochastic model by Medina
(2007).
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5.5 Implementing a probabilistic constraint

ranking

5.5.1 Introduction

The three-step logic illustrated in Section 5.4 is mirrored by the three-
step procedure used to computationally implement the probabilistic
constraint ranking. The computational steps devised by Medina are as
follows:

1. the grammaticality of the indefinite object drop is quantified via
an acceptability judgment survey, the results thereof are equated
to the probability of an implicit object output for a given input;

2. the probability of each of the four possible constraint orderings can
be estimated via the probability of an implicit object output;

3. knowing the probability of each constraint ordering, it is possible
to estimate the probability of *Int Arg dominating each constraint.

As is evident from comparing the logical and the computational steps (see
Table 5.7), the technical implementation of the model goes backwards
with respect to the underlying logic.

Table 5.7: Three-step design of Medina’s
model, where the computational stepsmir-
ror the logical steps. Logic

↓
step 1 step 3
step 2 step 2
step 3 step 1

↑
Computation

Let us discuss each computational step in more detail.
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8: Based on Olsen (1997 [2014]) and per-
taining observations throughout this chap-
ter. Refer to Section 3.2.1 for more details.

9: An experimental design with two inde-
pendent variables having two levels each,
resulting in four experimental conditions.

5.5.2 Computational step 1: Collecting acceptability

judgments

The collection of acceptability judgments is not a part of the computational
procedure per se, unlike the estimation of the parameters of the linear
functions. However, since acceptability judgments are directly equated
to the probability of an implicit object output, the fine points of their
collection belong to this Section nonetheless. I will now present the main
aspects of Medina’s experimental design, which the interested reader
can integrate with additional information by Medina (2007, pp. 110–134).
The linguistic predictors of object drop under consideration are semantic
selectivity, telicity, and perfectivity. Among these, semantic selectivity
and telicity8 are inherent properties of each verb, while perfectivity is a
sentence-level property. For this reason, the verbs inMedina’s experiment
are annotated with respect to their semantic selectivity and telicity, while
sentences are manipulated for perfectivity. This results in a 2x2 factorial
design9 where each verb, having its own selectivity and telicity profile,
appears both with and without a direct object, both having and lacking
the perfectivity feature. The examples in (14) are adapted from Medina
(2007, p. 113).

(14) a. Michael had brought.
b. Michael was bringing.
c. Sarah had brought a gift.
d. Sarah was bringing a gift.

The telicity of each verb was deemed to be [+Telic] if two out of three
tests yielded a telic interpretation, [-Telic] otherwise. As discussed in
Section 6.2 in regards to the telicity tests of choice in my own model,
there is something to be said about the feasibility of this particular set
of tests. However, they yielded very consistent results, and henceforth
they cannot be considered as a crack in the otherwise solid foundation
of Medina’s design. The three tests used by Medina (2007, pp. 302–303),
first introduced in Section 5.2.2, are as follows.

I The almost test. Predicates marked as [+telic] and appearing with
the adverb almost (e.g., Tony almost packed) can be interpreted as
describing either an event that has begun but has not finished, or an
event that has not yet begun.On the contrary, [-telic] predicateswith
almost (e.g., Tony almost ate) can only get the second interpretation.

I The in/for test. [+telic] predicates are more natural with in X time
as an adjunct (e.g.,Michelle made some stuff in/*for five minutes), while
[-telic] ones prefer for X time (e.g.,Michelle read *in/for five minutes).

I The counting test. Counting a [+telic] predicate results in a natural
interpretation where it denotes multiple, separate events (e.g.,
Edgar opened some stuff three times), while counted [-telic] predicates
appear as if denoting multiple instances of the same event (e.g.,
Edgar watched some stuff three times).

Using a set of 30 transitive verbs of interest and 10 intransitive verbs
resulted in a set of 160 sentences to be used as experimental stimuli
(because of Medina’s 2x2 design). The 30 transitive verbs were the same
used by Resnik (1993, 1996) to test his Selectional Preference Strength,
since Medina (2007) employs the same measure to quantify semantic
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selectivity. Of the 160 stimuli, the 40 intransitive sentences resulting
from the 10 intransitive non-target verbs were used as fillers to distract
the participants from the real focus of the experiment, the 60 transitive
sentences with an overt object were used as controls (since they had to
be grammatical by default), and the remaining 60 sentences featuring a
transitive verb used without a direct object were the actual target of the
experiment.
A total of 15 native speakers of English were recruited as participants
among the undergraduate students of Johns Hopkins University and
rewarded class credit for their effort. Each of them saw all the stimuli in
every experimental condition in randomized order, i.e., the experiment
followed a within-subject crossed design. Participants partook in a short
training session with 3 mock stimuli before accessing the experiment
proper, and received immediate feedback. Both in the training session
and the experimental session, participants had to score each stimulus
on a 5-point Likert scale ranging from 1 (ungrammatical) to 5 (fully
grammatical).

5.5.3 Computational step 2: Judgments and probabilities

The acceptability judgments thus obtained for each verb in each experi-
mental condition were considered equal to the probability of the implicit
object output to be returned by the stochastic model based on all the
possible re-rankings of the constraints at play for that given input. The
judgment scores were then used to estimate the probabilities of the four
possible constraint rankings in Table 5.6, which in turn were used to
estimate the probabilities of *Int Arg dominating each of the other three
constraints. Let us retrace the computational steps that lead to this result.
As shown in Section 5.4.4, the probability of an implicit object output for
each aspectual type of input is equal to the sum of the probabilities of the
individual partial orderings where *Int Arg is ranked above the relevant
constraints. This is shown in Equation 5.9 to Equation 5.12, reported here
again for ease of consultation.

?(implicit)Telic Perfective = ?(∗� � �, ), %) (Equation 5.9)
?(implicit)Telic Imperfective = ?(∗� � �, ), %) + ?(% � ∗� � �, ))

(Equation 5.10)

?(implicit)Atelic Perfective = ?(∗� � �, ), %) + ?() � ∗� � �, %)
(Equation 5.11)

?(implicit)Atelic Imperfective = ?(∗� � �, ), %) + ?() � ∗� � �, %)+
+ ?(% � ∗� � �, )) + ?(), % � ∗� � �) (Equation 5.12)

Based on the calculations in Equation 5.5 to Equation 5.8, the aforemen-
tioned sums of probabilities can be computed as follows in Equation 5.13
to Equation 5.16, where the probability of *Int Arg outranking all the
relevant constraints is equal to the joint probability of the independent
pairwise rankings of each constraint with respect to *Int Arg (as explained
in Section 5.4.3).
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?(implicit)Telic Perfective = ?(∗� � �) · ?(∗� � )) · ?(∗� � %) (5.13)
?(implicit)Telic Imperfective = ?(∗� � �) · ?(∗� � )) · ?(∗� � %)+
+ ?(∗� � �) · ?(∗� � )) · [1 − ?(∗� � %)] (5.14)
?(implicit)Atelic Perfective = ?(∗� � �) · ?(∗� � )) · ?(∗� � %)+
+ ?(∗� � �) · [1 − ?(∗� � ))] · ?(∗� � %) (5.15)
?(implicit)Atelic Imperfective = ?(∗� � �) · ?(∗� � )) · ?(∗� � %)+
+ ?(∗� � �) · [1 − ?(∗� � ))] · ?(∗� � %)+
+ ?(∗� � �) · ?(∗� � )) · [1 − ?(∗� � %)]+
+ ?(∗� � �) · [1 − ?(∗� � ))] · [1 − ?(∗� � %)] (5.16)

5.5.4 Computational step 3: Parameter estimation

The last step involves Equation 5.2, Equation 5.3, and Equation 5.4, where
the ranking of *Int Arg with respect to the other three constraints was
defined as a (linear) function of the input verb’s semantic selectivity.
Plugging them in Equation 5.13 results in the (cubic) function in Equation
5.17, describing the probability of an implicit object output with a telic
perfective input depending on the specific verb’s semantic selectivity.

?(implicit)Telic Perfective = [
�1 − �1

(%(<0G − (%(<8=
· ((%(8 − (%(<8=) + �1]·

· [ �2 − �2

(%(<0G − (%(<8=
· ((%(8 − (%(<8=) + �2]·

· [ �3 − �3

(%(<0G − (%(<8=
· ((%(8 − (%(<8=) + �3] (5.17)

The value of the function, i.e., ?(implicit)Telic Perfective, is the average
acceptability judgment for a telic perfective input with a known SPS, i.e.,
(%(8 in the equation. The values of (%(<0G and (%(<8= are known, since
they are the maximum and minimum Selectional Preference Strength
values in Resnik’s list, respectively. Henceforth, the equation has only
to be solved for �8 and �8 , which are the values the function takes at
(%(<0G and (%(<8= respectively. A similar reasoning applies to telic
imperfective, atelic perfective, and atelic imperfective inputs, once again
plugging Equation 5.2, Equation 5.3, and Equation 5.4 into Equation 5.14,
Equation 5.15, and Equation 5.16.
At the end of this process, the experimenter is leftwith a set of = equations,
each having six unknowns to be solved for, where = is the total number
of target sentences among the stimuli. In order to calculate �8 and �8 , the
judgments (i.e., the probabilities of object drop which serve as values of
the functions) underwent two preprocessing steps in Medina’s pipeline,
namely:

1. for each target sentence, the 15 judgments provided by 15 partici-
pants were averaged into a single numerical value, and

2. this numerical value was converted linearly to fall between 0 and 1,
since this is the proper range for probabilities.
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10: An add-in component of Microsoft
Excel used to find the optimal value of a
function based on several constraints.

Medina estimated the values of the unknown parameters using Excel
Solver10 , based on the following two constraints:

I �8 and �8 have to fall between 0 and 1;
I the sum-squared error between the predictions of the model and

the actual grammaticality judgment data have to be minimized.

Thanks to these constraints, the model outputs predicted grammaticality
values in the 0-1 probability range.

5.5.5 Summary of results

The values of �8 and �8 Medina found as a result of this optimization
indicate that, in English, *Int Arg is more likely to dominate each of the
other three constraints when the verb is highly semantically selective,
and this is most evident for Telic End. The actual values computed by
the model are in Table 5.8.

Table 5.8: Values of unknown parameters
�8 and �8 as computed inMedina’s stochas-
tic model.

� �
p(*Int Arg� Faith Arg) 0.70 0.82
p(*Int Arg� Telic End) 0.36 1.00
p(*Int Arg� Perf Coda) 0.65 0.80

These results are visualized in Figure 5.5, adapted from the figures in
Medina (2007, pp. 143–144).

Figure 5.5:Graphical representation of the
values of � and � in Medina’s model.
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Knowing the actual values of these parameters, it is possible to plug
them into Equation 5.17 (and the equivalent functions for the three other
aspectual types of input) to let the model predict the grammaticality
of an implicit object output in terms of its probability as a function of
semantic selectivity. Graphically, the state of affairs that was hypothesized
in Figure 5.4 looks like in Figure 5.6 (adapted fromMedina (2007, p. 145))
in Medina’s model of indefinite object drop in English. The figure shows
the probability of an implicit object output for all possible aspectual
types depending on SPS values ranging from 0 to 5, based on the � and
� values estimated in the model (shown in Table 5.8).

Finally, it results that:
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Figure 5.6: Realistic representation of the
relationship between semantic selectivity
and the probability (as a proxy to gram-
maticality) of an implicit object output in
Medina’s model, based on computed �
and � values.

I the probability of an implicit object output is directly proportional
to the verb’s SPS for all aspectual types of input;

I the relative probabilities hypothesized in Figure 5.4 are also shown
in the actual results, with the implicit object construction being
most likely with atelic imperfective inputs and least likely with
telic perfective inputs;

I due to semantic selectivity, there is an interaction between aspectual
features so that telic imperfective inputs are less likely to accept
object drop than atelic perfective inputs when the verb’s SPS is low
(approximately lower than 3 in Resnik’s and Medina’s case), while
the opposite happens for verbs with a higher SPS;

I in Figure 5.6, the curves for inputs having the same telicity feature
are more-or-less parallel because of the strong telicity effect shown
in the steep p(*Int Arg� Telic End) curve in Figure 5.5, where it
is also easy to spot the interaction between telicity and perfectivity
that was mentioned in the previous bullet point.

In Chapter 6, I will open the experimental part of this thesis by pre-
senting the five predictors I included in my own Stochastic Optimality
Theoretic model of the implicit indefinite object construction in English
and Italian.
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This Chapter presents the five linguistic factors I will use as predictors
in my Stochastic OT model of implicit indefinite objects, defined in
Chapter 9. The theory linking each of these factors to the omissibility of
direct objects was discussed in Chapter 3. In particular, I explained my
reasoning behind these choices in Section 3.5.

6.1 Recoverability

As discussed throughout Chapter 2 and in Section 3.1.1, direct objects
are likely omitted if they are "sufficiently recoverable" (Glass 2013) from
the meaning of the verb. Following Medina (2007), object recoverability
(as a predictor in the Stochastic Optimality Theoretic model proposed
in this thesis) is a continuous variable, for two main reasons stated
in Chapter 5. First, it would not be possible to set a fixed threshold
value to separate recoverable and non-recoverable object verbs. Second,
a continuous predictor works especially well within a model of gradient
grammaticality, such as the one hereby provided.
While Medina only employs the taxonomy-based Selectional Preference
Strengthmeasure by Resnik (1993, 1996), I will model object recoverability
using three different measures of a verb’s semantic selectivity as a proxy
to object recoverability:

I SPS, the taxonomy-based Selectional Preference Strength measure
by Resnik (1993, 1996);

I Computational PISA, a novel similarity-based measure of Pref-
erence In Selection of Arguments by Cappelli and Lenci (2020)
leveraging distributional semantics;

I Behavioral PISA, a behavioral measure inspired by Computational
PISA and computed as the Object Similarity measure by Medina
(2007), based on human similarity judgments.

These three measures are detailed in this Section.

6.1.1 Resnik’s SPS

Description Resnik (1993, 1996) was the first to link the recoverability
of direct objects to the selectional preferences of transitive verbs in a
computational model, substantiating this claim by showing that his
measure of selectional preference correlates well with plausibility and
typicality judgments provided by human subjects. Resnik observed that
the distribution of the classes of entities used as direct objects in a corpus
regardless of the predicate (called "prior distribution") is different from
the distribution of the same classes used as direct objects of a given
verb (called "posterior distribution"). A graphical representation of this
observation, relative to the verb to grow, is provided in Figure 6.1.
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Figure 6.1:Hypothetical representation of
the prior (on the left) and posterior (on the
right) distribution of direct object classes
with respect to the verb to grow, adapted
from Resnik (1993, p. 54). <l
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Under this view, selectional preferences are fully encoded by the change
between the prior and the posterior distribution. Resnik implemented
this intuition with his Selectional Preference Strength (SPS) measure,
defined as the Kullback-Leibler divergence (relative entropy) between
the two distributions, as in Equation 6.1.

(%(E,A =
∑

2∈2;0BB4B
?(2 |E, A) log2

?(2 |E, A)
?(2 |A) (6.1)

In Equation 6.1, ?(2 |E, A) is the posterior distribution of the argument
classes (each called c) occurring with a given verb E in a given relation A
with the verb, and ?(2 |A) is the prior distribution of the argument classes
participating in the r relation with any verb. The only relevant relation
for the purposes of this thesis is the verb-object relation, but it can also be
any other grammatical function (such as verb-subject) or semantic role
(such as the verb-Instrument relation, as modeled in Cappelli and Lenci
(2020)).
The probabilities in Equation 6.1 are estimated from corpus frequencies.
Thus, assuming that only nouns participating in the verb-object relation
are considered, ?(2 |E, A) is computed as in Equation 6.2, and ?(2 |A) is
computed as in Equation 6.3.

?(28 |E, A) =
5 (E, A, 28)∑

2∈2;0BB4B 5 (E, A, 2)
(6.2)

?(28 |A) =
5 (A, 28)∑

2∈2;0BB4B 5 (A, 2)
(6.3)

The frequencies associated to each class are equated to the sum of the
frequencies of the nouns (each called n) belonging to that class, since they
cannot be extracted directly from the corpus. Thus, 5 (E, A, 2) is computed
as in Equation 6.4 and 5 (A, 2) is computed as in Equation 6.5.

5 (E, A, 2) =
∑

= |2∈ℎH?(=)
5 (E, A, =) (6.4)

5 (A, 2) =
∑

= |2∈ℎH?(=)
5 (A, =) (6.5)

In order to overcome the problem of word sense disambiguation posed
by polysemous nouns, Resnik (1993, p. 28) proposes to "distribute the
credit" for a noun uniformly over its possible classes, namely, to average



6.1 Recoverability 91

the frequency of the noun over all the k classes subsuming that noun, as
in Equation 6.6.

5 (A, =) =
∑:
8=1 5 (A, =, 28)

:
(6.6)

Given a set of transitive verbs used in a corpus, SPS scores will be higher
for transitive verbs having a narrow selectional range (as in (1-a)) and
lower for those having a broader selectional range (as in (1-b)).

(1) a. John ate ∅object.
b. *John made ∅object.

Crucially, selectional preferences as measured by SPS provide insight
about the recoverability of direct objects, and their recoverability affects
the grammaticality of the sentences in (1). In particular, to eat selects
mostly for edible items, so that when reading (1-a) we can reasonably
assume John ate some kind of food, while to make selects for a wide array
of objects from semantically different classes, so it is impossible to know
what is that John made in (1-b).
The classes considered when computing the SPS scores have to belong
to a lexical taxonomy, so that each sense of each noun in the lexicon is
mapped to a concept. Using Resnik’s example (Resnik 1993, p. 59), the
noun baseball can be mapped to two concepts, i.e., a hyponym of the
concept <ball> and a hyponym of the concept <field game>. Moving
from concepts to taxonomy classes, a noun belongs to any class having
one of its concepts as a hyponym, even indirectly. Thus, as illustrated
in Figure 6.2, baseball belongs not only to the classes <ball> and <field
game>, but also to <game equipment>, <artifact>, <inanimate object>,
<outdoor game>, <sport>, <human activity>, and <entity> (the root
node of the whole hierarchy).

<entity>

<inanimate object>

<artifact>

<game equipment>

<ball>

... ... ...

...

...

...

baseball

... <human activity>

<sport>

<outdoor game>

<field game>

... ... ...

...

...

...

Figure 6.2: Simplified representation of
the noun baseball in the lexical taxonomy.

In order to compute SPS scores, Resnik adopts WordNet (Beckwith et al.
1991; G. A. Miller 1995) as a computational model of the lexical taxonomy.
Its appeal to the author (Resnik 1993, p. 32) lies in that the WordNet
taxonomy encodes knowledge in an explicit, hierarchical fashion, which
is "intuitively reasonable" and "widely accepted".
Resnik (1993, 1996) also defines the Selectional Association (SA) of a
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verb-relation-class triple as the ratio of the SPS for that class and the
overall SPS of the verb-relation pair (see Equation 6.7).

(�E,A,2 =
?(2 |E, A) ;>6 ?(2 |E,A)

?(2 |A)

(%(E,A
(6.7)

Then, the SA of a verb-relation-argument triple is defined as the highest
verb-relation-class SA among those computed for each WordNet class the
argument belongs to, as in Equation 6.8.

(�E,A,0 = max
28∈ℎH?(0)

?(28 |E, A) ;>6 ?(28 |E,A)?(28 |A)

(%(E,A
(6.8)

Resnik (1996, p. 142) computed SA scores for a set of transitive verbs in
English, finding that verb-object pairs where the object is plausible for
the verb (such as read-article, write-letter) received a significantly higher
SA score than pairs featuring an implausible object (such as read-fashion,
write-market).
Resnik’s work inspired newmodels of SA over the years (Abe and Li 1996;
Alishahi and Stevenson 2007; Bergsma, Lin, and Goebel 2008; Brockmann
and Mirella Lapata 2003; Ciaramita and Johnson 2000; S. Clark and
D. Weir 2001; Grishman and Sterling 1992; Nadejde, Birch, and Koehn
2016; U. Padó, M. W. Crocker, and Keller 2009; Shutova, Tandon, and
Melo 2015; Van de Cruys 2014), used in a variety of linguistic tasks from
semantic role classification to metaphor detecting (Haagsma and Bjerva
2016; Schulte im Walde et al. 2008; Zapirain et al. 2013), but no further
refinements of the SPS itself. As I will show in Section 6.1.2 relative to
my novel distributional measure of semantic selectivity (Cappelli and
Lenci 2020), computing SA scores is a crucial step in the calculation of
Computational PISA scores, despite it being intended as an improvement
on Resnik’s SPS rather than on SA itself.
While powerful in many respects, Resnik’s model of selectional prefer-
ences has a crucial drawback, which is the need for a manually-built
lexicon. This requirement makes it difficult to compute SPS scores for
verbs in languages without a WordNet, for neologisms, and for special
registers not yet encoded in WordNet. Given this severe limitation, I
decided to improve on Resnik’s SPS to model the recoverability of direct
objects, creating a model based on distributional semantics (Lenci 2008,
2018) that can be applied in all the cases where the SPS measure cannot.

Results The SPS scores for the English and Italian transitive verbs under
consideration are fully listed in Appendix C.1.

6.1.2 Computational PISA

Distributional semantics is based on the Distributional Hypothesis,
which states that words occurring in the same contexts tend to have
similar meanings, or, quoting the popular formula from Firth (1957), that
"you shall know a word by the company it keeps". Such a framework
puts the meaning of words in the ever-changing use speakers make of
language, instead of securing it in the nodes of a static lexical taxonomy.
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Most importantly, distributional semantics posits a correlation between
distributional similarity and semantic similarity, and uses the former
to model the latter. Roughly, the semantic space where words "keep
company" can be modeled as a vector space where each word is a vector
whose dimensions are context words. An example is provided in Figure
6.3, where the two words hamburger and dragon populate a semantic
space defined by the three context words big, tasty, and mythological. The
coordinates of hamburger are (2,2,0) because in this hypothetical situation
it occurs twice with big, twice with tasty, and never with mythological,
while the coordinates of dragon are (2,0,1) because it occurs twice with big,
never with tasty, and once with mythological in the hypothetical corpus.
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hamburger

dragon

Figure 6.3: Simplified representation of
the words hamburger and dragon in a vector
space.

How does all of this translate into a solution to the problem of having
a taxonomy-free model of argument recoverability? Let us go back to
the example in (1) and consider the distribution of the arguments of
the two verbs to eat and to make in a corpus. Ideally, collapsing on a 2-
dimensional grid the =-dimensional space populated by these arguments,
the distribution of the arguments of to eat would resemble Figure 6.4
and the distribution of the arguments of to make would resemble Figure
6.5. The (recoverable) arguments of to eat are close together in the vector
space, while the (non-recoverable) arguments of to make are very sparse
in the same space.
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Figure 6.4:Made-up representation of the
possible distribution of the direct objects
of the verb to eat in a vector space.
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Figure 6.5:Made-up representation of the
possible distribution of the direct objects
of the verb to make in a vector space. 0.3 0.4 0.5 0.6 0.7
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1: https://github.com/ellepannitto/
PISA

Based on these consideration, the conclusion is that the closer the di-
rect objects of a verb are in a vector space, the more recoverable they
should be. This is the main intuition behind Computational PISA, whose
computational implementation I will discuss in the next paragraph.

Computational implementation Computational PISA is defined as
the semantic density of a verb-relation pair, i.e., the mean value of the
pairwise cosine similarity between the arguments of the pair. In this thesis,
this means calculating the mean pairwise cosine similarity between all
the direct objects of a given transitive verb. The full script used to obtain
Computational PISA scores using a corpus and a list of verbs as input is
available on GitHub1 .
This is done in two steps, for each transitive verb under consideration.
The first one is to compute the Selectional Association between the verb
and each one of its direct objects as defined by Erk (2007) and Erk, S. Padó,
and U. Padó (2010) in Equation 6.9. This is a measure of the strength
of the selectional preference SA of a verb for a possible argument a0,
modeled as the weighted sum of the similarities between the candidate
argument a0 and the actual arguments found in the corpus (each called
a in the formula). In Cappelli and Lenci (2020) and this dissertation, I
measure argument similarity with the cosine similarity.

(�E,A(00) =
∑

0∈0A6B(E,A)
FCE,A(0) B8<(00 , 0) (6.9)

Then, Computational PISA scores are computed as in Equation 6.10, i.e.,
by averaging Equation 6.9 over the n direct objects of a given transitive
verb.

%�(�E,A =
1
=

=∑
8=1

(�E,A(08) (6.10)

In Cappelli and Lenci (2020) fiveweighting functions are used to compute
Equation 6.9 and then Equation 6.10 (Equation 6.11, Equation 6.12, and
Equation 6.13 are taken from Erk, S. Padó, and U. Padó (2010)). In detail,
the functions are as follows.

https://github.com/ellepannitto/PISA
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I UNI assumes a uniform distribution. This actually yields an
unweighted model, because in Equation 6.9 the argument sim-
ilarity is always multiplied by 1.

FCE,A(0) = 1 (6.11)

I FRQ is the co-occurrence frequency of a given direct object with
the transitive verb under consideration.

FCE,A(0) = freq(0, E, A) (6.12)

I IDF is inspired to the well-known Inverse Document Frequency
weighting scheme by Spärck Jones (1973), which assigns higher
scores to direct objects occurring with fewer transitive verbs (the
minimum would be 0, for an argument that occurs with every
verb in the corpus). This is done in order to mitigate the frequency
effect of arguments occurring with too many verbs to be considered
relevant for the specific target verb under examination. In Equation
6.13, |E, A | is the number of transitive verbs in the corpus, and
|E, A : 0 ∈ E, A | is the number of transitive verbs having 0 as a direct
object.

FCE,A(0) = log2
|E, A |

|E, A : 0 ∈ E, A | (6.13)

I LMI is the Local Mutual Information (Evert 2005, p. 89) of a direct
object and a given transitive verb, computed as in Equation 6.14.
The LMI compares the probability of a noun occurring in a corpus
as the direct object of a verb with the probability of the noun and
the transitive verb occurring in a corpus without any relation to one
another. In other words, given a noun and a transitive verb, their
LMI is computed as the logarithmic ratio of their joint probability
and the product of their individual probabilities in the corpus (i.e.,
their joint probability if they were statistically independent events).

FCE,A(0) = 5 (0, E, A) log2
?(0, E, A)
?(0)?(E, A) (6.14)

I ENT is the entropy (Shannon 1948) of the direct objects of a given
transitive verb. Information theory uses entropy to quantify the
informativity of a given event, inheriting itsmathematical definition
from thermodynamics. The entropy of an event (which in Equation
6.15 is the direct object itself) is a function whose value decreases
as the probability of the event increases.

FCE,A(0) = −
∑

0∈0A6B(E,A)
?(0) log2 ?(0) (6.15)

In Equation 6.15, ?(0) = 5 (0)∑
00∈� 5 (00) , where � is the complete set of

the direct objects of the target verbs, extracted from the corpus.

The original experiment In Cappelli and Lenci (2020), I computed
both weighted models of argument recoverability (as explained in the
previous paragraph) and unweighted models, only taking into account
300 direct objects for each transitive verb. For each verb, the relevant 300
objects were selected after sorting the entire list of direct objects based on
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the FRQ, IDF, LMI and ENT functions. The reason to include unweighted
models in the experiment stems from the observation that the computa-
tion of Equation 6.10 for verbs with a large number of direct objects can
get cumbersome, and it may be possible to achieve a comparable degree
of informativity by only considering the most relevant objects occurring
with each verb.
I tested the models on a 99-verb set of transitive verbs, extracting their
direct objects from ukWaC, a 2-billion token part-of-speech tagged and
lemmatized corpus of English (Ferraresi et al. 2008). Direct objects were
modeled as bare head nouns, excluding any determiner and modifier
present in the DP (e.g., sword instead of a big rusty sword). I obtained
the vector representation of direct objects by using 12 different 300-
dimensional embeddings trained on a concatenation of ukWaC and a
2018-dump of English Wikipedia, including both SVD-reduced count-
based DSMs and neural embeddings.
Since Computational PISA was intended to model argument recoverabil-
ity, I tested the results of each model by means of a Mann-Whitney U
test comparing the mean Computational PISA score of the recoverable-
object transitive verbs with the mean Computational PISA score of the
non-recoverable-object transitive verbs. Summing up the discussion of
the results carried out in the original paper (here in Table 6.1), it was
found that the weighted versions of Computational PISA yield highly
significant results, while the unweighted versions yield results with a
comparable degree of significance just with the FRQ sorting function
and, in particular, running the model on word2vec (Mikolov et al. 2013)
distributional spaces.

Operative choices Drawing from the results discussed in Cappelli and
Lenci (2020) and summarized in the previous paragraph, I computed
Computational PISA scores for my verbs of interest in English and Italian.
For English, I based the calculations on ukWaC as in the original study,
and for Italian, I based them on itWaC, a 2-billion token part-of-speech
tagged and lemmatized corpus of Italian (Baroni et al. 2009). Given
that web-scraped, automatically tagged corpora this large inevitably
suffer from significant noise in the data, which then results in possibly
unreliable results, I pre-processed the data extracted from both corpora
tominimize the impact of noise and taggingmishaps. First of all, I filtered

Table 6.1: Mann-Whitney U tests com-
paring recoverable- and non-recoverable-
argument verbs (significance levels).

weighted top : bot :

SVD *** - -
UNI w2v *** - -

w2vf ** - -
SVD *** ** ns

FRQ w2v *** *** ns
w2vf *** ** ns
SVD *** ** ns

IDF w2v *** *** ***
w2vf ** ns ns
SVD *** ** ns

LMI w2v *** * *
w2vf *** * *
SVD *** ns ns

ENT w2v *** *** ns
w2vf *** * *
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2: https://github.com/giuliacappelli/
dissertationData

the 65,000 direct objects of my 30+30 target verbs so that they were:

I not hapaxes (considering the verb-noun frequencies);
I having an absolute frequency in the corpus greater than 100;
I present in WordNet (to eliminate misspelled words).

Then, I manually filtered the remaining nouns so that each verb only
takes direct objects which do not belong to any of these categories:

I idiomatic senses (e.g., ’ice’ as an object of ’to break’);
I metaphoric senses (e.g., ’mind’ as an object of ’to poison’);
I direct objects of an unintended meaning of the verb (e.g., ’salmon’

as an object of ’to smoke’, since the intended sense of ’to smoke’ in
my study is only the one related to inhaling the byproduct of the
combustion of tobacco and other plants);

I unintended direct objects (e.g., Recipients in double-object con-
structions such as ’pupils’ in ’to teach pupils Linguistics’, since in
my study I am only interested in Theme/Patient direct objects);

I mistaggeddirect objects (e.g., ’disorder’ as an object of ’to eat’,which
is clearly the result of the automatic corpus tagger interpreting
’eating’ in ’eating disorder’ as a verb rather than as an adjective);

I ’thing’ (and ’stuff’), which appears with every transitive verb and
is thus irrelevant.

The files containing the complete list of direct objects of each verb,
both raw and cleaned, both in English and in Italian, are available for
consultation on my GitHub profile2 .
I based my operative choices regarding the vector spaces and weighting
functions on the results I obtained in the original Computational PISA
study. In particular, I computed word2vec neural embeddings with the
Python library Gensim with the same parameters for English and Italian,
i.e., Skipgram with Negative Sampling (SGNS) with 5 noise words,
window of 10 words, 300-dimension vectors, ignoring all words with
an absolute frequency lower than 10. Among the five functions defined
in Cappelli and Lenci (2020), I employed the FRQ weighting function
because it is the best-performing among all five, both in weighted and in
sorted models of Computational PISA.

Results The Computational PISA scores for the English and Italian
transitive verbs under consideration are fully listed in Appendix C.2.

6.1.3 Behavioral PISA

Introduction Despite representing a clear step forward compared to
Resnik’s taxonomy-based measure of selectional preferences, a corpus-
based measure such as Computational PISA still has notable downsides.
First of all, the corpus on which Computational PISA calculations are
based has to be large enough to feature all the verbs under consideration,
and for each verb to present a sufficient number of direct objects to allow
for the computation of meaningful Computational PISA scores. It may
well be the case that using a small corpus forces an experimenter to draw
from a different set of verbs than intended for their study, if not all of
them are featured in the corpus. Moreover, low-frequency verbs may

https://github.com/giuliacappelli/dissertationData
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appear with a small set of direct objects even in large corpora, making it
potentially difficult to obtain reliable Computational PISA scores. Another
order of problems (which larger, automatically-tagged corpora are more
prone to suffer from than smaller, manually-tagged ones) depends on
noisy or otherwise inaccurate corpus data. For instance, large corpora
constructed by crawling the Web (such as ukWaC and itWaC) typically
present a substantial number of misspelled words and mis-tagged parts
of speech, making it necessary to clean them manually beforehand. In
addition to this, even clean corpora often lack fine-grained semantic
information about thematic roles (e.g., distinguishing the Theme and
the Recipient in John gave Mary a book), polysemy (e.g., to graduate may
mean ’to become a doctor’, but also ’to arrange something in gradations’),
and idiomatic uses of verbs (e.g., there is usually no actual bucket being
kicked when someone kicks the bucket). It is also important to point out
that the static word embeddings used to obtain Computational PISA
scores are unable to discriminate between different senses of a word,
unlike dynamic, contextual embeddings such as BERT (Devlin et al. 2018),
where a word gets represented by different vectors in different contexts.
In order to overcome these problems and obtain equally reliable scores
for each verb in my experiment, I decided to implement a behavioral
variant of the original Computational PISA measure. In the case of
Behavioral PISA, the semantic similarity of a given verb’s direct objects
is not approximated via their distributional similarity in a corpus, but
instead via their psychological similarity as judged by native speakers
of the languages under study. Such a measure is intended to provide
robust data for each verb regardless of its corpus frequency or scarcity of
direct objects with respect to other verbs, at the cost of having to perform
a behavioral experiment with human subjects.

Experimental protocol The experimental procedure to obtain the rele-
vant data and compute the Behavioral PISA scores follows closely the
method Medina used in her thesis to compute a comparable measure,
which she calls "Object Similarity" (Medina 2007, pp. 173–178), andwhose
purpose is to overcome the shortcomings of Resnik’s SPS. In a sense, Ob-
ject Similarity may be viewed as a behavioral precursor of Computational
PISA, both being based on a broad notion of selectivity-as-semantic-
closeness.
In order to build the stimuli, I picked 6 pairs of direct objects for each
verb of interest in my two 30-verb sets (one for English and one for Italian,
as detailed in Chapter 7). For each verb, the direct objects comprising the
6 pairs were randomly selected from the manually cleaned (see Section
6.1.2) verb-object lists, so that each pair contained two different direct
objects. This operation resulted in 180 stimuli (30 verbs x 6 direct objects)
for each language, which the interested reader will find in Appendix B.
Each pair of direct objects works as a stimulus, without explicit mention
of the verb which subcategorizes the objects in the pair.
The two lists of 180 stimuli were used to create two Google Form surveys
(with randomized stimuli), and 25 unpaid raters were recruited online for
each language among native speakers holding at least a Bachelor’s degree.
Each rater had to judge the similarity of the two objects in each pair
on a 7-point Likert scale in a single experimental session. Crucially, the
participants to the experiment were not provided with a strict definition
of similarity, and they did not know that the stimuli were direct objects of
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3: https://github.com/giuliacappelli/
behavioralPISA

a given set of verbs. Instead, theywere told that the pair ’love - upholstery’
should get a rating of 1 an the pair ’cat - dog’ should get a rating of 7,
to familiarize them with the Likert scale, and they were encouraged to
make use of the whole 7-point scale whenever necessary.

Computational implementation Behavioral PISA is defined as the
mean pairwise similarity between a subset of direct objects of a transi-
tive verb. The pairwise similarity was obtained via human similarity
judgments on a 7-point Likert scale, as described right above. In order
to account for individual differences in the use of the scale, I computed
the within-subject z-scores of these results, and then I averaged the
normalized scores to obtain a single value for each target verb E (Kim,
Rawlins, and Smolensky 2018, 2019; Kim, Rawlins, Van Durme, et al.
2019) as in Equation 6.16, where A is a (normalized) rating and 8 is the
total number of ratings.

%�(�E =

∑
8 AE

8
(6.16)

The Behavioral PISA scores thus obtained were then normalized to fall
between 0 and 1. The Python script I coded to generate the stimuli and
compute the Behavioral PISA scores for each verb is freely available on
my GitHub profile3 .

Results The Behavioral PISA scores for the English and Italian transitive
verbs under consideration are fully listed in Appendix C.3.

6.1.4 Model evaluation

The three models of semantic selectivity as a proxy to the recoverability
of the direct objects of a verb discussed in this section (i.e., Resnik’s
SPS, Computational PISA, and Behavioral PISA) all capture different
aspects of the same phenomenon and leverage different computational
implementations. Resnik’s SPS is a taxonomy-basedmeasure which looks
at the WordNet classes direct objects belong to, in order to compute
the selectional strength of a transitive verb. Computational PISA is a
corpus-based measure whose implementation is rooted in distributional
semantics. Behavioral PISAmodels the recoverability of the direct objects
of a given transitive verb via acceptability judgments elicited from native
speakers relative to the similarity of several pairs of those direct objects.
Using human judgments on object similarity as a baseline to evaluate
the performance of computational models, in this Section I will consider
Behavioral PISA the benchmark against which Resnik’s SPS and Com-
putational PISA are to be compared. Based on the correlation matrix in
Table 6.2, relative to the three models of semantic selectivity in English,
it appears that Computational PISA is a significantly reliable model
(Pearson r 0.685, p < 0.001), while Resnik’s SPS does not make the cut
(Pearson r 0.286, non-significant).

Similarly, based on the correlation matrix in Table 6.3, relative to the three
models of semantic selectivity in Italian, it results that Computational
PISA in Italian is just as good a model of semantic selectivity as it

https://github.com/giuliacappelli/behavioralPISA
https://github.com/giuliacappelli/behavioralPISA
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Table 6.2: Correlation matrix for the three
models of semantic selectivity in English.
Significance levels are star-marked in the
table as follows:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

SPS Comp. PISA Behav. PISA

SPS 0.330 . 0.286
Comp. PISA 0.330 . 0.685 ***
Behav. PISA 0.286 0.685 ***

is in English, with a Pearson r of 0.687, significant at the 0.001 level.
Interestingly, Resnik’s SPS is also somewhat a good model if compared
against human judgments (Pearson r 0.522, p < 0.05), but way less so
than Computational PISA.

Table 6.3: Correlation matrix for the three
models of semantic selectivity in Italian.
Significance levels are star-marked in the
table as follows:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

SPS Comp. PISA Behav. PISA

SPS 0.746 *** 0.522 *
Comp. PISA 0.746 *** 0.687 ***
Behav. PISA 0.522 * 0.687 ***

Thus, Computational PISA compares favorably to Behavioral PISA both
in English and in Italian, making it a sensible choice for a distributional
model of a verb’s semantic selectivity, especially considering that both
PISAs are based on the pairwise similarity of direct objects.
Incidentally, Table 6.2 and Table 6.3 also show that there is a much higher
correlation between Computational PISA and Resnik’s SPS in Italian
(Pearson r 0.746, p < 0.001) than in English (Pearson r 0.330, not quite
significant). These results suggest that, while being methodologically
closer to Behavioral PISA as a pairwise similarity-based model, Compu-
tational PISA in Italian shares with Resnik’s SPS something even more
relevant. Given that Computational PISA, unlike Resnik’s SPS, does not
make use of WordNet or other taxonomies, it stands to reason that the
common factor between these two measures of semantic selectivity in
Italian has to be itWaC, i.e., the corpus used in both their computational
implementations. More light on the difference between ukWaC and
itWaC on the linguistic models of object drop they yield will be shed in
Chapter 8 and Chapter 9.

6.2 Telicity

6.2.1 Telicity tests

Section 3.2.1 introduced telicity as a major predictor of object omissibility.
Since aspectual interpretation is compositional (Olsen 1997 [2014], p. 14), a
transitive verbwhich can beused both transitively and intransitively tends
to get a telic interpretation in the first case and an atelic interpretation in
the second case (refer to Section 5.2.2 for more details).
In my behavioral experiments and subsequent linguistic models of object
drop, I operationalize telicity as a binary feature, based on theoretical
claims discussed in Chapter 3 and Chapter 5. A verb is considered [+telic]
if two tests yield a telic interpretation, [-telic] otherwise. Out of Medina’s
set of tests, I only used the staple in/for test for telicity, rejecting the almost
test since it is notoriously quite problematic with achievements (please
refer to Bertinetto and Delfitto (2000) for an extensive discussion on the
issue), and the counting test because speakers seldom agree on its results.
Verbs were tested without a direct object to avoid involuntarily eliciting
a telic interpretation, or with a generic object (e.g., "something") if the
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4: I also considered the conjunction test
for telicity, but then decided to discard it
because it is weaker than the other two.
This diagnostic requires that the predicate
be tested in a sentencewhere it is modified
by two conjoined temporal adjuncts denot-
ing consecutive time slots, as in (2). Telic
verbs in this construction, as in (2-a), imply
two separate events (i.e., John built some-
thing on Saturday and something else on
Sunday). On the contrary, sentences with
atelic verbs, as (2-b), can be interpreted
either as two separate events (i.e., John
sang on Saturday, stopped, and resumed
his singing on Sunday) or as a continuous
event (John sang on both days without
interruption).

(2) a. John built something on Sat-
urday and on Sunday.

b. John sang on Saturday and
on Sunday.

intransitive use yields a grammatically unacceptable interpretation. The
two tests used for the experiments of this thesis are as follows (the reader
is referred to Borik (2006) and L. Liu (2014) for a detailed review of
possible telicity tests)4 .

In/for test Based on this largely agreed-upon diagnostic for telicity,
telic predicates (e.g., to build in (3)) are only grammatical if used with
time-frame adverbials such as "in X time", while atelic predicates (e.g., to
sing in (4)) are grammatical if used with time-span adverbials such as
"for X time".

(3) a. John built something in an hour.
b. %John built something for an hour.

(4) a. *John sang in an hour.
b. John sang for an hour.

Progressive entailment test The progressive form of a predicate bears
different pragmatic implicatures based on whether it is telic or atelic. In
particular, saying that the subject "was verbing" implies that they verbed
with atelic verbs as in (5-b), while this is not true for telic verbs as in (5-a).

(5) a. John was building something.
b. John was singing.

6.2.2 Results

The telicity features of each English and Italian transitive verb are listed
in Appendix C.4.

6.3 Perfectivity

Perfectivity was argued to be as a possible determinant of object drop in
Section 3.2.2. The main point is that transitive verbs resist the omission of
their direct object when used in the perfective aspect (as in (6-a)), while
verbs in the imperfective aspect are much more likely to allow for their
object to be dropped (as in (6-b)).

(6) a. ?John painted.
b. John was painting.

Like telicity, perfectivity appears as a binary feature in my experiments
and models. Unlike telicity, perfectivity is not an inherent feature of
verbs, so it cannot be tested beforehand: instead, I will include it in the
behavioral experiments by having both perfective and imperfective uses
of the same verb (please refer to Chapter 7 for a complete overview of the
experimental design). The reader will find the results of these operative
choices in Appendix D.
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5: Please refer to Section 3.2.3 for broader
considerations on the way telicity, perfec-
tivity, and tense interact with one another.

6.3.1 A note on tense

To choose the correct tenses to encode (im)perfectivity in English and in
Italian, a critical discussion on the relation between tense and aspect5 is
in order. A common perspective on grammatical aspect in English, as
summarized by C. S. Smith (1991, p. 106) and Wagner (2001, p. 663), is
that perfective aspect corresponds to the simple form of the verb, while
imperfective aspect is derived via the progressive construction (i.e., by
adding the auxiliary be and -ing to themain verb). This perspective has the
undeniable merit of keeping grammatical aspect and lexical aspect apart,
acknowledging the orthogonality of (a)telicity and (im)perfectivity (refer
to Bertinetto (2001) for an extensive discussion on the issue). However, the
view that the simple form of a verb is necessarily interpreted as perfective
has long since been abandoned. Indeed, based on Bertinetto (2001) and
Olsen (1997 [2014]), the simple past in English is not marked for the
perspective aspect. On the contrary, simple verb forms are aspectually
unmarked, and they get different aspectual interpretations based on the
interaction of tense, lexical aspect, and the different context they appear
in. For this reason, for the experimental stimuli I will choose tenses that
are aspectually marked, as to avoid misinterpretations.
However, this observation about the absence of a one-to-one correspon-
dence between past tense and perfective aspect should not be taken to
mean that there is absolutely no link between the two. Even though
simple past does not equate to perfective aspect, it is nevertheless true
that past tense at least hints towards perfectivity, as noted by Comrie
(1976) and later on by Medina (2007), Olsen (1997 [2014]), and Wagner
(2001), among others. So, a morphologically unmarked past form is more
likely to be interpreted as perfective than a non-past form. Moreover,
there are differences internal to the group of past forms. In fact, as we
saw before, the simple past is aspectually unmarked, but the past perfect
(e.g., John had written a book.) is marked as perfective.

6.3.2 Operative choices

Considering what has been noted in Section 6.3.1, and following Medina
(2007), in the experimental stimuli perfective aspect will be encoded
with perfect morphology, and imperfective aspect will be encoded with
progressive morphology.
For English, perfective stimuli will be in the past perfect tense (as in (7-a))
and imperfective stimuli in the past continuous tense (as in (7-b)). For
Italian, perfective stimuli will be in the trapassato prossimo tense (as in
(8-a)) and imperfective stimuli in the continuous past form created with
the auxiliary ’to stay’ in the imperfetto tense and the simple gerund of the
main verb (as in (8-b)).

(7) a. John had played.
b. John was playing.

(8) a. Gianni aveva cantato.
b. Gianni stava cantando.

On a side note, Italian also has perfective-only and imperfective-only
simple past tenses, namely passato remoto and imperfetto, but I chose to use
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compound tenses since passato remoto lost some ground to passato prossimo
over the last few decades, and also considering the variety of regional
uses of passato remoto (Bertinetto and Squartini 1996). Most importantly,
the trapassato prossimo tense was chosen to encode perfective aspect in
Italian because it’s the aspectually closest Italian tense to the English past
perfect, despite the glaring differences between the aspectual systems in
these two languages (Bertinetto 1992).

6.4 Iterativity

As argued in Section 3.3.2, iterativity and other types of pluractionality
favor the omission of direct objects (compare (9-a) and (9-b)). Although
well-known in the theoretical literature (Glass 2013, 2020; Ruda 2017), to
my knowledge this predictor of object drop appears here for the first time
in a comprehensive linguistic model based on acceptability judgments.

(9) a. #The Joker killed.
b. The Joker killed again.

Iterativity is yet another binary predictor and it will be encoded in the
behavioral experiments in the same way as perfectivity, that is to say, by
creating both iterative and non-iterative stimuli for the same verb as in
(9) (please refer to Appendix D for the complete set).

6.5 Manner specification

The effects of manner specification on indefinite object drop were pre-
sented in Section 3.1.3. As argued by Ruda (2017) a.o., if a transitive
verb allows for its direct object to be dropped, then its troponyms or
near-synonyms with a specific manner component block it. This is evi-
dent in (10): the base verb to eat allows for object drop in (10-a), but its
manner-specified counterparts to devour/nibble/chew in (10-b) do not.

(10) a. John ate.
b. *John devoured/nibbled/chewed.

In the following experiments, manner specification is treated as a binary
predictor. The verbs used in the stimuli are marked in Appendix C.5
as either manner-specified or manner-unspecified. Just as in (10), verbs
tagged as manner-specified are marked counterparts of manner unspeci-
fied verbs present in the list.
On Page 35 I observed, in passing, that manner-specified verbs tend to
imply that the action described by the verb reached its natural endpoint,
e.g., to devour, unlike to eat, strongly implies that the Patient is utterly
consumed by the devourer. Based on the way I will implement telicity
in my experiment (taken from Olsen (1997 [2014]), following Medina
(2007)), then, one could wonder as to the relation between telicity and
manner specification. In other words, if manner-specified verbs imply
that the action got to its natural endpoint, is then manner specification
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collinear or highly correlated with telicity? If so, one or the other should
be excluded from the set of predictors used in the experiment. However,
this is not the case, as shown in Appendix C. Indeed, while there is
noticeable overlap between telicity and manner specification (with 12
atelic, manner-unspecified verbs and 8 telic, manner-specified verbs),
there is also a number of cases where the relation does not hold (i.e.,
6 atelic, manner-specified verbs and 4 telic, manner-unspecified verbs).
Moreover, a sanity check I performed before running the linear mixed-
effects models in Chapter 8 showed that telicity and manner specification
are indeed not collinear with one another.
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7.1 Operative choices

The development of both experiments is organized in three steps, i.e.,
building, running, and recruiting, with a different platform employed
for each step. The merits of the PsychoPy-Pavlovia-Prolific pipeline,
described below in full detail, are making it a growingly popular choice
among behavioral experimenters. Let us examine each step separately.

7.1.1 Building the experiment locally

I built the experiment using the graphical interface (called "Builder") of
PsychoPyv2020.2.10 (Peirce et al. 2019). PsychoPy is an open-source, cross-
platform software package allowing experimenters to build any kind
of experiment in psychology, neuroscience, psychophysics, linguistics,
and other behavioral sciences. It makes it possible to code an experiment
from scratch using the Coder interface (or any Python-friendly Integrated
Development Environment), or to build one using the graphical interface
provided by the Builder. To a skilled Pythonprogrammer, themain appeal
of the Builder lies in that it has a feature to translate the built-in Python
functions into JavaScript code that can run online, while Coder-created
experiments can only be run locally on the experimenter’s computer.

7.1.2 Running the experiment online

In order to be run online on the participants’ devices, a PsychoPy Builder
experiment first has to be uploaded on Pavlovia, a hosting platform for
behavioral experiments coded using PsychoPy, lab.js, or jsPsych. Pavlovia
can be fine-tuned to launch experiments online with a variety of options
(e.g., launch pilots or full-fledged experiment, save or discard incomplete
submissions), and it integrates seamlessly with popular participant
recruiting platforms. Moreover, it doubles up as a source code repository
thanks to integration with GitLab.
The source code for both my experiments, as well as the stimuli used in
them, is available here for English1 and Italian2 . The files can be read
directly online, but the code requires PsychoPy to be edited.

7.1.3 Recruiting participants

Both surveyswere runonProlific (formerly knownas "ProlificAcademic"),
a large crowdsourcing platform that was specifically developed to cater to
the needs of researchers. For a review of the merits of running behavioral
experiments online and recruiting participants via crowdsourcing, please
refer to Erlewine and Kotek (2016), Gibson, Piantadosi, and Fedorenko

https://github.com/giuliacappelli/psychopy_exps/tree/main/eng
https://github.com/giuliacappelli/psychopy_exps/tree/main/ita
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3: Please refer to Langsford et al. (2018)
and Weskott and Fanselow (2011) for an
analysis of the reasons why judgments
on a 7-point Likert scale are a better al-
ternative to both binary judgments and
judgments collected via a Magnitude Esti-
mation (Bard, Robertson, and Sorace 1996)
task.

4: See, for instance, Arunachalam (2013)
and Brysbaert, Mandera, and Keuleers
(2018) on the word frequency effect and
other confounding variables.

(2011), and Grootswagers (2020).
The experimental tasks were carried out by 30 people for the study on
Italian and 30 people for the study on English. All 60 people are native
speakers of Italian and English, untrained in Linguistics, holding at least
a Bachelor’s degree (in order to minimize the effect of education on their
judgments), and lacking any knowledge of the goals of this dissertation.
The estimated duration for the experiments was about 30 minutes.
Participants who completed the experiment were given £3.00 each as
compensation for their effort, in compliance with Prolific’s policy calling
for ethical rewards.

7.2 Target verbs

Both for English and for Italian, the verb dataset used to build the
stimuli comprises 30 target transitive verbs and 10 filler intransitive verbs.
The reader will find both sets, together with the relevant frequency
information, in Appendix A.
The optimal verb set used in the creation of the stimuli must be balanced
in every relevant aspect. This means that:

I it has to include the same number of English and Italian verbs
(leading to the samenumber of stimuli in both Likert3 experiments);

I the verbs have to span over different frequency ranges within
the same language (i.e., they cannot all be high-frequency or low-
frequency verbs);

I each English verb has to have a corresponding Italian verb with
roughly the same meaning and comparable (relative) frequency in
the corpus.

This last requirement on verb frequency is crucial, since word frequency
is typically confounded with the variables under consideration in (psy-
cho)linguistic experiments4 .
The creation of a verb set for the twoLikert experimentswas accomplished
in two steps, as detailed below.

7.2.1 Creation of verb lists

First of all, a list was made of several transitive English verbs (3 from
Resnik (1993, p. 138), 8 from Levin (1993, p. 33), 4 from both papers, and 5
commonly used verbs of my choosing). I further added to the list 10 verbs
specified with respect to the manner component (discussed in Section
6.5), based on my personal opinion as a linguist and person in charge of
this study. This resulted in a list containing 30 transitive verbs, reported
in Table 7.1.
The English verbs in the list have unambiguous meanings (e.g., to slice,
to wash). I did not include all of Resnik’s original set, which featured
highly polysemous verbs such as to have and to do, precisely to comply
with this requirement. In order to verify that the 30 verbs are indeed
monosemous, quantifying my intuition in a more rigorous way, I used
WordNet (G. A. Miller 1995) to check that each verb belongs to just one
synset (i.e., has just one sense) or, if it belongs to more than one as it
often happens, that these synsets are very close together semantically.
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5: The Wu-Palmer similarity (WP) is a
similarity measure based on the depth of
the two synsets (s1 and s2) in the taxonomy
and the depth of their closest ancestor, i.e.,
the Least Common Subsumer (LCS).

,% = 2 ∗
34?Cℎ(!�((B1, B2))

34?Cℎ(B1) + 34?Cℎ(B2)

It can vary between 0 and 1 (0 < WP ≤ 1),
with higher scores corresponding to more
similar senses.

6: https://github.com/giuliacappelli/
checkPolysemy

7: According to Zipf’s law, The Ath most
frequent word has a frequency 5 (A) that
scales according to:

5 (A) ∝ 1
A

for  ≈ 1. Based on this law, the distribu-
tion of word frequencies w.r.t. the word
rank A is a logarithmic distribution (cru-
cially, not a linear one).

In order to achieve this result, I computed the Wu-Palmer similarity5
between all the WordNet synsets each verb belongs to. I defined strict
criteria for monosemy, namely, a verb is only considered monosemous
if no more than 20% of its senses have a Wu-Palmer similarity score
lower than a set threshold. For lack of a standardized threshold in the
literature, I set it at 0.15, since it is close to the scores of very different
word senses of the notoriously non-monosemous English noun bank, a
now classic textbook example (0.1428 for ’bank1: sloping land’ versus
’bank2: financial institution’, 0.1538 for ’bank1: sloping land’ versus ’bank6:
gambling house funds’). All the 30 verbs in the set are acceptable, based
on these requirements. It is possible to reproduce the results (or apply
the test to novel data) using my Python script, available here on GitHub6
.
Keeping the semantic requirement for monosemy in mind, I created the
set of 30 Italian verbs (also listed in Table 7.1) by translating each English
verb from the list into Italian, and checked that they are not polysemous
using the same criteria applied to the English verb set. For each verb
in the English set, the corresponding Italian verb is the first translation
found in the WordReference English-Italian Dictionary ©2020. I had to
choose the second translation by WordReference just for to chop (because
the first translation, tagliare, suits best the verb to cut) and for to swig
(because the first translation, tracannare, features in the itWaC corpus
only 32 times, while trangugiare is found 647 times).
Based on the information discussed in Chapter 6, I computed the seman-
tic selectivity scores for each verb in both lists, and I annotated each verb
pair with their telicity and manner specification features (the full details
are collected in Appendix C).

7.2.2 Frequency check

The second step in the creation of the verb set is a "sanity check" of
the verb frequencies, both within-language and between-language, as
detailed in this paragraph. The (absolute) frequency of each verb was
extracted from ukWaC for English and itWaC for Italian (Baroni et al.
2009).
Absolute frequencies have to be transformed in order to be compared,
since they are corpus-dependent, and also because words occur in a
corpus according to the power law known as "Zipf’s law". 7 Computing
the relative frequency, or the frequencypermillionwords,would solve the
first problem but not the second. Log-transforming either of these would
solve both problems, but low-frequency words would yield negative
logarithms, so that the scale would not be easily human-readable and it
would be quite difficult to use for the purposes of this experiment.
In order to overcome these problems, I used the "Zipf scale" by Van
Heuven et al. (2014), i.e., a logarithmic scale going from 1 (very-low-
frequency words) to 7 (very-high-frequency words), much like a Likert
scale. The human (or automatic) interpretation of values on the Zipf scale
is straightforward, and it does not vary across corpora. The middle of the
scale, i.e., 4, is the tipping point between low- and high-frequency words,
and words with a Zipf score higher than 6 are very likely to be function
words (i.e., non-content words, such as determiners and auxiliaries, often
called "stop words" in computational literature).

https://github.com/giuliacappelli/checkPolysemy
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Table 7.1: The sets of English and Italian
verbs of interest.

English verbs Italian verbs source

behead decapitare new (manner of killing)
break rompere new
build costruire new
chop spaccare new (manner of cutting)
clean pulire Levin (1993)
cook cucinare Levin (1993)
cut tagliare new
devour divorare new (manner of eating)
doodle scarabocchiare new (manner of writing)
drink bere Levin (1993) and Resnik (1993)
eat mangiare Levin (1993) and Resnik (1993)
embroider ricamare Levin (1993)
hum canticchiare Levin (1993)
kill uccidere new
knife accoltellare new (manner of cutting)
poison avvelenare new (manner of killing)
polish lucidare Levin (1993)
pour versare Resnik (1993)
sew cucire Levin (1993)
sign firmare new (manner of writing)
sing cantare Levin (1993) and Resnik (1993)
sip sorseggiare new (manner of drinking)
slice affettare new (manner of cutting)
smoke fumare new
steal rubare Resnik (1993)
swig trangugiare new (manner of drinking)
teach insegnare Levin (1993)
wash lavare Levin (1993)
watch guardare Resnik (1993)
write scrivere Levin (1993) and Resnik (1993)

Knowing the absolute frequency of a verb in a corpus ( 5 ) and the corpus
size in tokens (2), Zipf scores (/) are easy to compute as in Equation 7.1
or, equivalently, as in Equation 7.2 (both are the base 10 logarithm of the
frequency-per-billion-words).

/ = log10
5 ∗ 1, 000, 000, 000

2
(7.1)

/ = log10
5

2
+ 9 (7.2)

Having chosen a suitable scale to compare my verb frequencies, I per-
formed the within- and between-language tests. As for the within-
language check, I verified that the Zipf scores of the verbs for both
languages were compatible with a distribution spanning from low- to
high-frequency verbs, avoiding extremes (English verbs 2.078 ÷ 5.520,
Italian verbs 1.681 ÷ 5.763). Lastly, I made sure that each English verb be-
longed in the same Zipf score tier as its Italian translation, by computing
the difference between the English and the Italian Zipf scores. Since the
Zipf scale is designed so that words in each of the 7 tiers have significantly
different corpus frequencies, I take an English-Italian Zipf difference to be
acceptable if smaller than 1, while I would reject any English-Italian verb
pair with a difference in Zipf scores equal to or greater than 1. The within-
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and between-language frequency tests showed that the two verb sets
comply with the above requirements. The reader will find the frequencies
and Zipf scores in Appendix A.

7.3 Design

Both experiments follow a within-subject fully crossed design, where
every participant sees all the stimuli in random order and provides
judgments for each on a 7-point Likert scale.
The stimuli are organized in a 2x2x2 factorial design, summarized in
Table 7.2, with 3 independent variables (presence of an overt direct
object, perfectivity, iterativity) having 2 levels each (presence or absence
of the feature). This experimental design is more complex than the 2x2
design by Medina (2007), since I am adding iterativity as an independent
variable.

overt dObj perfectivity iterativity
+ + +
+ + -
+ - +
+ - -
- + +
- + -
- - +
- - -

Table 7.2: The 2x2x2 factorial design used
in both Likert experiments.

Each verb of interest (fully listed in Appendix A) participates in each of
the 8 experimental conditions. Since telicity, semantic recoverability, and
manner specification are inherent properties of each verb, they are not
part of the experimental design.

7.4 Stimuli

All the 30 target verbs plus 10 intransitive filler verbs participate in all
the experimental conditions, leading to a total of 320 sentence stimuli
(twice as in Medina (2007)) for each language in the study.
The list of English and Italian intransitive filler verbs is provided in Table
7.3. Since these verbs are part of the experimental design but irrelevant
for the subsequent analysis, they were not controlled for frequency, nor
were they annotated with semantic or aspectual information.

English fillers Italian fillers
clap applaudire
fast digiunare
knock bussare
laugh ridere
limp zoppicare
rest riposarsi
scream urlare
sleep dormire
smile sorridere
stagger barcollare

Table 7.3: The sets of English and Italian
filler verbs.
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8: Based on the design in Section 7.3.

As mentioned in Chapter 6, semantic recoverability, telicity, and manner
specification vary across verbs, while the presence of an overt direct
object, perfectivity, and iterativity vary across sentences. This means
that the two groups of object drop predictors are treated in different
ways. Recoverability, telicity, and manner specification are intrinsic
characteristics of each verb, respectively continuous the first and binary
the last two (refer to Appendix C for the complete set of verbs with their
features). On the contrary, the presence of a direct object, perfectivity,
and iterativity are binary features that need to be encoded by creating a
pair of minimally different sentences for each.
Let us consider the eight8 example stimuli for the verb to eat in (1):

(1) a. John had eaten pizza again. [dObj+, perf+, iter+]
b. John had eaten pizza. [dObj+, perf+, iter-]
c. John was eating pizza again. [dObj+, perf-, iter+]
d. John was eating pizza. [dObj+, perf-, iter-]
e. John had eaten again. [dObj-, perf+, iter+]
f. John had eaten. [dObj-, perf+, iter-]
g. John was eating again. [dObj-, perf-, iter+]
h. John was eating. [dObj-, perf-, iter-]

All the 30 verbs of interest and the 10 filler verbs, both for English and
Italian, will feature in stimuli like the ones listed in (1). In transitive
sentences, regardless of the verb being transitive or intransitive in nature,
the direct object is semantically compatible with the meaning of the verb
so that the violationof selectional preferencesdoes not act as a confound in
the experiment. Moreover, in order to minimize the possible confounding
effect of other factors which Hopper and Thompson (1980) identified as
relevant in determining prototypical transitivity (as discussed in Section
2.1), all the stimuli are in the indicative (realis) mood, they are affirmative
rather than negative, and they feature a human subject (which is the most
volitional, high-in-potency Agent possible). As anticipated in Section 2.5,
no context is provided in the stimuli, since it is known to enhance the
recoverability of objects and, thus, to influence the grammaticality of
indefinite object drop.
The reader will find the full list of stimuli and verb-object pairings in
AppendixD, and detailed information on themanipulation of perfectivity
and iterativity in Section 6.3.

7.5 Setting

7.5.1 Informed consent

First of all, the participants had to accept the privacy policy in order to
proceed to the survey, or else decline the terms and exit the experiment.
The English and the Italian versions of the privacy policy are reported
below.

Privacy policy for the English survey

During this survey, you will not be asked personal information. In no
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way will it be possible for anyone to find out your identity by having
access to your answers to the survey. The data you will provide will
be used for the purposes of this linguistic experiment and they may
be shared with third parties anonymously. By completing the survey,
you accept these terms. If you leave the survey early, your data will
not be used in the study and you will not be compensated.

Privacy policy for the Italian survey

Nel questionario non ti saranno chieste informazioni personali. Non
sarà possibile per nessuno risalire alla tua identità a partire dalle
risposte che darai nel questionario. I dati che fornirai saranno usati
ai fini di questo esperimento linguistico e potranno essere condivisi
con terzi in forma anonima. Completando il questionario, dichiari di
accettare questi termini. Se abbandoni il questionario in anticipo, i tuoi
dati non saranno usati nello studio e non riceverai alcun compenso.

7.5.2 Instructions

Then, participants were given instructions in their native language (i.e.,
the target language of the survey). The full text is available right below
for both English and Italian.

Instructions for the English survey

This survey takes about 30 minutes to complete, and you will be
rewarded £ 3.00 as compensation if you complete the survey.
You will see a series of sentences, one by one. For each, you are asked
to judge how acceptable it is to you on a graded scale. You should
rate a sentence 1 if it sounds utterly bad, 7 if it sounds perfectly fine,
or choose any in-between score if you think it applies. Let us consider
some examples:

I John laughs stories.

This sentence should score 1, because you can’t "laugh something".

I Mario walked on the path.

This sentence should score 7, because it’s perfectly acceptable.
This is not an exam! By virtue of being a native speaker of English, you
will provide the right answers. Beware: to avoid cheating and random
clicking, the survey is interspersed with hidden control questions. If
you fail them, you will be kicked out of the survey and receive no
compensation.

Instructions for the Italian survey

Il questionario richiede - minuti in media per essere completato e
riceverai 3.00 £ come compenso se lo completerai tutto.
Vedrai una serie di frasi, una alla volta. Per ciascuna, devi giudicare
quanto ti sembra accettabile in una scala di valori. Dovresti dare a
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una frase il punteggio 1 se ti sembra del tutto sbagliata, 7 se ti suona
del tutto corretta, o scegliere punteggi intermedi se ti sembra il caso.
Guardiamo alcuni esempi:

I Gianni ride storie.

A questa frase dovresti dare 1, perché non si può "ridere qualcosa".

I Mario camminava sul sentiero.

A questa frase dovresti dare 7, perché è perfettamente accettabile.
Questo non è un esame! Le tue risposte sono tutte giuste, perché sei
un parlante nativo di italiano. Attenzione, però: per impedire che
vengano date risposte a caso, il questionario contiene domande di
controllo nascoste. Se le sbaglierai, ti sarà impedito di continuare a
rispondere e non riceverai alcun compenso.

7.5.3 Screening survey

Finally, the participants were asked to complete a short screening survey
before entering the actual linguistic judgment survey. The screening
questions are presented in (2) for English and in (3) for Italian:

(2) a. Are you a native speaker of English?
b. Have you got a Bachelor’s (or higher) degree?
c. Have you understood the instructions above?

(3) a. Sei un parlante nativo di italiano?
b. Hai una laurea triennale (o titolo superiore)?
c. Hai capito le istruzioni presentate sopra?

Participants could click on either "Yes" or "No" buttons to answer. Answer-
ing "No" to any screening questions meant being automatically kicked
out of the survey.

7.5.4 Training session

Before entering the actual experimental session, participants had the
chance to accustom themselves to the task in a short training session.
They were asked to judge the acceptability of each sentence on a 7-point
Likert scale, as in the full experimental session. Likert scales are a reliable
method to test grammaticality (Weskott and Fanselow 2011), and the
7-point variant (unlike the 5-point scale used by Medina (2007)) is the
most common in experimental linguistics (Juzek 2016).
In order to keep the training session as short as possiblewhilemaximizing
its usefulness, subjects only judged a fully-grammatical sentence and a
fully-ungrammatical sentence (in (4) for the English survey and (5) for
the Italian survey).

(4) a. Jack had opened a bar.
b. *Ann went a sandwich.

(5) a. Sergio ha aperto un bar.
b. *Anna è andata un panino.
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9: Please refer to Permuth-Wey and Boren-
stein (2009) for an extensive debate on the
ethical and practical implications of finan-
cial remuneration in behavioral research.

Unlike the real experimental session, the training session allowed partici-
pants to keep rating a sentence as many times as they wanted, instead
of kicking them out in the case of a mistake. After each judgment on
the Likert scale, participants received immediate feedback in the same
interface window. They were either prompted to provide a different
judgment on the same sentence, if the score they chose was off-scale, or
they were asked to continue to the next task, if they rated the sentence
correctly. Expected scores in the training session were quite strict, i.e., no
less than 6 for (4-a) and (5-a), and no more than 2 for (4-b) and (5-b).

7.5.5 Experimental session

The 320 stimuli were presented in randomized order, since order is well-
known to have an effect on acceptability judgments (Juzek 2016; Myers
2009). In general, randomizing stimuli or counterbalancing conditions
are good experimental practice to counteract the effects of carryover,
fatigue, and practice. Moreover, the stimuli were presented one by one,
in order to prevent participants to compare the stimuli one to another
instead of judging them individually. The concern for similar task-specific
strategies and the need to avoid eliciting them is raised, among others,
by Myers (2009).
Participants were instructed to click on their chosen score and then press
their spacebar to proceed to the next stimulus, so they could change their
mind before submitting their judgment for good. The experiment was
coded as to prevent participants from skipping stimuli.

7.5.6 Reliability of judgments

The reliability of the collected judgments was ensured in two different
ways. On a general note, paid compensation is standard practice in
behavioral studies where attentiveness is key, as well as being a popular
way to make up for the time participants invested9 in the experiment.
A more task-specific method to elicit reliable judgments involves using
the clearly ungrammatical and the clearly grammatical control sentences
as monitoring stimuli. This means that ungrammatical control sentences
like (6), where an intransitive filler verb appears with a direct object,
should get a very low score on the 7-point Likert scale.

(6) * John had slept pillows.

Likewise, grammatical control sentences like (7-a), where a transitive
verb appears with a semantically compatible direct object, or one like
(7-b), where an intransitive verb is used intransitively, should get a very
high score on the 7-point Likert scale.

(7) a. John was eating pizza.
b. John was limping.

Summing up, based on the experimental design previously depicted in
Table 7.2, the stimuli are divided into target stimuli and (un)grammatical
control stimuli as in Table 7.4.
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Table 7.4: Summary of which stim-
uli are targets and which ones are
(un)grammatical controls in both experi-
ments.

overt dObj perfectivity iterativity trans. verbs intrans. verbs
+ + + / *control
+ + - control *control
+ - + / *control
+ - - control *control
- + + target /
- + - target control
- - + target /
- - - target control

10: https://github.com/giuliacappelli/
dissertationData

Since getting just one judgment wrong out of 320 would cost a partic-
ipant his reward (and, incidentally, cost this study valuable data), the
requirements for a judgment to be deemed correct were softened with
respect to those used in the training session. Thus, participants who
provided a score higher than 3 (i.e., not in the lower half of the scale) to
filler sentences or lower than 5 (i.e., not in the higher half of the scale) to
control sentences were kicked out of the experiment and did not receive
any compensation, since out-of-range scores would mean that they were
not paying enough attention to the task or were downright clicking at
random.
Notably, iterative sentences with transitive verbs used transitively and
intransitive verbs used intransitively were not included among the con-
trol stimuli, because they are not prototypical examples of perfectly
grammatical sentences. It would have been frustrating for participants to
be excluded from the experiment (and the reward) for a single mistake
on such a sentence, especially considering that half the stimuli already
were control sentences.
The results of the English and Italian experiments are presented in full
detail in Chapter 8. The full English and Italian stimuli, together with the
raw scores provided by the participants on a 7-point Likert scale for the
target sentences, are also available on my GitHub profile in a dedicated
repository10 .

https://github.com/giuliacappelli/dissertationData
https://github.com/giuliacappelli/dissertationData
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8.1 Making sense of the results: computational

implementation

8.1.1 Operative pipeline

This paragraph outlines the technical steps needed to replicate my results
by running my scripts on the raw judgment data I collected. As pointed
out before, all the raw input data necessary to run my scripts, which in
this case are the Likert judgments provided by human participants to the
experiment in Chapter 7, are available in a dedicated GitHub repository∗.
The first step in this pipeline is the cleansing and reshaping of the
output generated in the PsychoPy-Pavlovia-Prolific process of judgment
gathering detailed in Section 7.1. This result can be achieved using my
dedicated script† on GitHub, which takes care of taking the full Pavlovia-
generated file as input and yielding a tabular output with the minimal
information necessary to runmy Stochastic Optimality Theoretic analysis.
The script also anonymizes the participants’ names to make the data
shareable, and it can (optionally, depending on the experimenter’s needs)
filter out any participant providing polar either-1-or-7 judgments when
prompted to make full use of the 7-point Likert scale.
The judgments are now ready to be processed with the main Python
program‡, which preprocesses the judgments as described in Section
8.1.2, generates the data used in the analysis provided in this Chapter,
and models the judgments according to the Stochastic Optimality Theory
requirements described in Chapter 4 (final results in Chapter 9).

8.1.2 Data preprocessing

Before moving forward to the actual data analysis and modeling, the
main script carries out three preprocessing steps:

1. computing the min-max normalized semantic selectivity values for
Resnik’s SPS, Computational PISA, and Behavioral PISA input files
(first introduced in Section 6.1), to make the results comparable
across models;

2. multiplying the semantic selectivity score of each verb by its Zipf
value (first introduced in Section 7.2), i.e., the base 10 logarithm
of the frequency-per-billion-words of the verb in a given corpus,
to avoid having the verb’s frequency confound the information
provided by the semantic selectivity models;

∗ https://github.com/giuliacappelli/dissertationData
† https://github.com/giuliacappelli/PsychopyToMedina
‡ https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory

https://github.com/giuliacappelli/dissertationData
https://github.com/giuliacappelli/PsychopyToMedina
https://github.com/giuliacappelli/PsychopyToMedina
https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory
https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory
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3. computing the within-subject z-scores for the judgments, then
averaging these scores to obtain the mean judgment for each
sentence in the stimuli list, then normalizing the mean judgments
between 0 and 1 (following the technique by Kim, Rawlins, and
Smolensky (2018, 2019) and Kim, Rawlins, Van Durme, et al. (2019)),
to account for inevitable differences in the way each participant
makes use of the Likert scale.

This kind of preprocessing also improves on Medina’s (2007) setting,
where both semantic selectivity and judgment data were analysed by
considering their raw, original values, because itminimizes the potentially
disruptive influence of external factors such as corpus frequencies and
individual differences in humans on the final Stochastic Optimality
Theoretic model of object drop.
In the next sections, following Medina (2007), I will provide a thorough
description of the way the acceptability judgments about the implicit
object construction are influenced by each factor separately and by all the
factors together, both in English and in Italian. This analysis will show
that:

I no factor alone has a main effect so strong as to fully predict the
grammaticality of the implicit object construction;

I a comprehensive Stochastic Optimality Theoretic model of object
drop based on all five predictors in Chapter 6 is indeed feasible.

The model itself is presented and discussed in Chapter 9.

8.2 English results

8.2.1 Semantic selectivity

The effect of semantic selectivity on the acceptability of the implicit
object in English is quantified by means of a Pearson correlation between
them. The results of this computation are visualized in Figure 8.1 for
Resnik’s SPS, in Figure 8.2 for Computational PISA, and in Figure 8.3 for
Behavioral PISA.
The first thing to strike the eye of the observer is that the three models of
semantic selectivity correlate with varying degrees of accuracy with the
human judgments. The Selectional Preference Strength, a now-classic
measure by Resnik (1993, 1996), yields unsatisfactory results which fall
quite short of statistical significance. Computational PISA performsmuch
better, with significant (p = 0.038) results, even though the correlation
between it and the judgments is very modest (Pearson’s r = 0.381). Finally,
Behavioral PISA appears to be by far the best-performing model of
semantic selectivity, with a Pearson’s r of 0.494 against human judgments
and a p value of 0.006.
Keeping in mind what I concluded about the three models of semantic
selectivity back in Section 6.1.4 (see Table 6.2 in particular), these results
should not come as a surprise. Indeed, being based on human judgments,
Behavioral PISA is expected to yield the best results among the three
models used here. Computational PISA correlated quite well with the
Behavioral PISA benchmark, and we can see that it also correlates
nicely with the acceptability judgments regarding the implicit object
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construction. Resnik’s SPS, on the contrary, was found to be a poor
model of semantic selectivity if compared to Behavioral PISA, and it
is also a poor fit if compared to human ratings about object drop. The
good performance of Computational PISA and Behavioral PISA against
Resnik’s SPS can be explained by referring to the way these models were
created, since both PISA models are based on pairwise similarity scores
between pairs of direct objects for a given verb, while Resnik’s SPS is
taxonomy-based.
All in all, semantic selectivity (especially the PISA models) is not a bad
predictor of object drop in English, but it’s far from being a reliable one
when considered in isolation from all the other possible factors.
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Figure 8.1: Correlation between semantic
selectivity (Resnik’s SPS) and normalized
acceptability judgments on object drop in
English.
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Figure 8.2: Correlation between semantic
selectivity (Computational PISA) and nor-
malized acceptability judgments on object
drop in English.

8.2.2 Binary predictors

Telicity The boxplots in Figure 8.4 illustrate the main effect of telicity
on the acceptability judgments on the implicit object construction in
English. A Mann-Whitney U test reveals that telic verbs were judged as
significantly (p < 0.0001) less grammatical than atelic verbs, consistently
with expectations (refer back to Section 3.2.1 and Section 6.2). In particular,
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Figure 8.3: Correlation between seman-
tic selectivity (Behavioral PISA) and nor-
malized acceptability judgments on object
drop in English.
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1: The interquartile range is the difference
between the first quartile and the third
quartile, which are the medians of the
lower and the upper half of the dataset,
respectively. Graphically, it is rendered
as the so-called "box" in the boxplot. The
other parts of a boxplot are the median
(second quartile), cutting the interquartile
range, and the so-called "whiskers", i.e.,
the minimum and maximum values in
the dataset. Outliers are shown in these
boxplots as little diamonds outside of the
boundaries traced by the whiskers.

the median rating for telic verbs is 0.501 and the median rating for atelic
verbs is 0.906.
Despite the statistical significance of the difference between the ratings
of telic and atelic verbs, it is not the case that all telic verbs receive ratings
below a given threshold and all atelic verbs receive ratings above it. On
the contrary, judgments for telic verbs span almost all the way from 0 to
1, and while judgments for atelic verbs have a much tighter distribution
(with their interquartile range1 being fully above the interquartile range
for telic verbs), they still overlap in a non-negligible way. Figure 8.4 only
shows a single outlier among the atelic verbs, corresponding to the atelic,
manner-unspecified verb to cut in the perfective, non-iterative sentence
stimulus Sean had cut (normalized acceptability rating of 0.286). This may
depend on the fact that not only this verb is fairly resistant to object drop
despite its atelicity, with all its ratings being within the lower 18 positions
among the 72 atelic target stimuli, but this stimulus in particular also has
two features which tend to favor the use of overt objects in sentences (i.e.,
perfectivity and lack of iterativity).

Figure 8.4: Effect of telicity on normalized
acceptability judgments about object drop
in English.
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Perfectivity The boxplots in Figure 8.5 illustrate the main effect of per-
fectivity on the acceptability judgments on the implicit object construction
in English. The median rating for imperfective stimuli is 0.854 while the
median rating for perfective stimuli is 0.703, and a Mann-Whitney U test
shows that these medians are significantly different (p < 0.01). This result
is compatible with the hypothesis that the imperfective aspect favors the
omission of direct objects and perfective aspect resists it (refer back to
Section 3.2.2 and Section 6.3).
However, the distribution of judgments both for imperfective and for per-
fective stimuli is very sparse, given that both span almost all the way from
0 to 1, and there is significant overlap between both interquartile ranges.
Neither imperfective nor perfective stimuli received outlier ratings.
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Figure 8.5:Effect of perfectivity onnormal-
ized acceptability judgments about object
drop in English.

Iterativity The boxplots in Figure 8.6 illustrate the main effect of itera-
tivity on the acceptability judgments on the implicit object construction in
English. The median rating for iterative stimuli (0.826) is higher than the
median rating for non-iterative stimuli (0.753), consistently with the liter-
ature on the matter (refer back to Section 3.3.2 and Section 6.4). However,
the difference is not stark enough to be statistically significant according
to a Mann-Whitney U test, which may depend on native speakers being
less sensitive to iterativity if compared to other linguistic factors (such as
telicity and perfectivity) when it comes to judging the grammaticality of
the implicit object construction.
Once again, the distribution of judgments for both types of stimuli covers
almost all the possible 0-1 range, and there are no outlier ratings.

Manner specification The boxplots in Figure 8.7 illustrate the main
effect of manner specification on the acceptability judgments on the
implicit object construction in English. AMann-WhitneyU test shows that
the median rating for manner-unspecified verbs (0.898) is significantly
higher (p < 0.001) than the median rating for manner-specified verbs
(0.645), consistently with the literature and the hypothesis (refer back to
Section 3.1.3 and Section 6.5).
The distribution of judgments for manner-specified verbs (0.060 ÷ 0.987)
is more sparse than the distribution of judgments for manner-unspecified
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Figure 8.6: Effect of iterativity on normal-
ized acceptability judgments about object
drop in English.
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2: As detailed in Section 7.3, semantic se-
lectivity, telicity, and manner specification
are properties of each target verb, which
participate in a 2x2x2 experimental design
where the presence of a direct object, per-
fectivity, and iterativity are manipulated
at the sentence level.

verbs (0.286 ÷ 1), if one does not consider the five outliers among the
latter. These outliers are the ratings for:

I the four target stimuli for the verb to break (perfective non-iterative2
0, imperfective iterative 0.038, perfective iterative 0.039, imperfec-
tive non-iterative 0.050);

I the perfective, non-iterative stimulus for the verb to build (0.124),
i.e., Paul had built.

As was the case with the atelic outlier in Figure 8.4, the outlier stimulus
for the verb to build is both perfective and non-iterative, making it a
very unlikely candidate for felicitous object drops. The verb to break
appears to be quite resistant to object drop regardless of the experimental
conditions, given that all the target stimuli featuring it are outliers (below
the lower whisker of the boxplot) in the distribution of judgments for
manner-unspecified verbs.

Figure 8.7: Effect of manner specification
on normalized acceptability judgments
about object drop in English.
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3: For observations on the feasibility of lin-
ear mixed-effects models applied to rating
data, such as Likert-scale judgments, refer
to Bross (2019), Cunnings (2012), Endresen
and Janda (2017), Gibson, Piantadosi, and
Fedorenko (2011), and Kizach (2014).

4: The conditional R2 quantifies the to-
tal explanatory power of the model, i.e.,
how much both fixed effects and random
effects explain the variance in the data.
The marginal R2 instead quantifies the
explanatory power of fixed effects alone.

5: Linear mixed-effects model are gen-
erated by optimizing a complex func-
tion over thousands of steps. The opti-
mizer, which in the case of lme4::lmer is
nloptwrap by default, stops as soon as it
finds a solution to the optimization prob-
lem or after a given number of unsuccess-
ful iterations. In the first case, the model
is said to have converged and it is reliable.
In the other case, a warning is issued that
the model has not converged, meaning
that the estimates it yielded may not be
reliable.

8.2.3 Joint effect of predictors

In this section I will consider the joint effect of all five predictors of object
drop on the grammaticality ratings in a statisticalmodel, in order to gauge
the feasibility of a linguistically-motivated probabilistic model of the
implicit object construction. I will compute a linear mixed-effects model3
for each measure of semantic selectivity I employed, accounting both for
the fixed effects determined by the five predictors and for the random
effects determined by my choice of verbs and participants, whereas
Medina (2007, p. 131) computed a multiple linear regression (which is
not endowed to account for random effects in addition to the fixed ones).
I carried out my analysis using the Python package statsmodels and
completed it with the R function report() of the package easystats

(Makowski et al. 2021), which takes as its input the linear mixed model
created with the R function lmer() of the package lme4 (Bates et al. 2015),
to compute the conditional R2 and marginal R2 of the model4 .
The three linear mixed-effects models I computed are reported in:

I Table 8.1 (conditional R2 = 0.53,marginal R2 = 0.20), where semantic
selectivity is measured with Resnik’s SPS;

I Table 8.2 (conditional R2 =0.53,marginal R2 =0.20),where semantic
selectivity is measured with Computational PISA;

I Table 8.3 (conditional R2 =0.53,marginal R2 =0.22),where semantic
selectivity is measured with Behavioral PISA.

In general, it is alreadypossible to observe that,while the total explanatory
power is the same for the three models, Behavioral PISA generates a
slightly better model than Resnik’s SPS and Computational PISA when
considering the fixed effects alone.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 4.117 0.334 12.333 0.000 3.463 4.771
tel[atelic] 1.504 0.388 3.870 0.000 0.742 2.265
perf[imperf] 0.541 0.045 11.903 0.000 0.452 0.630
iter[iter] 0.221 0.045 4.864 0.000 0.132 0.310
spec[nospec] 0.280 0.383 0.732 0.464 -0.470 1.031
sps 0.199 0.183 1.088 0.277 -0.159 0.557
subject Var 0.351 0.071
verb Var 0.943 0.196

Table 8.1: Linear mixed-effects model of
the fivepredictors of object drop inEnglish
as fixed effects, with verb and participant
subject as random effects, measuring se-
mantic selectivity with Resnik’s SPS.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 4.167 0.352 11.854 0.000 3.478 4.856
tel[atelic] 1.437 0.407 3.526 0.000 0.638 2.235
perf[imperf] 0.541 0.045 11.903 0.000 0.452 0.630
iter[iter] 0.221 0.045 4.864 0.000 0.132 0.310
spec[nospec] 0.261 0.390 0.669 0.504 -0.504 1.026
cpisa 0.182 0.198 0.920 0.358 -0.206 0.571
subject Var 0.351 0.071
verb Var 0.956 0.198

Table 8.2: Linear mixed-effects model of
the five predictors of object drop in En-
glish as fixed effects, with verb and partici-
pant subject as random effects, measuring
semantic selectivity with Computational
PISA.

The three models all converge5 on similar results. In particular, they
show that:

I the effect of (im)perfectivity, (a)telicity, and iterativity is statistically
significant and positive;
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Table 8.3: Linear mixed-effects model of
the fivepredictors of object drop inEnglish
as fixed effects, with verb and participant
subject as random effects, measuring se-
mantic selectivity with Behavioral PISA.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 4.238 0.336 12.601 0.000 3.579 4.898
tel[atelic] 1.278 0.405 3.157 0.002 0.485 2.072
perf[imperf] 0.541 0.045 11.903 0.000 0.452 0.630
iter[iter] 0.221 0.045 4.864 0.000 0.132 0.310
spec[nospec] 0.306 0.367 0.832 0.406 -0.415 1.026
bpisa 0.331 0.190 1.740 0.082 -0.042 0.705
subject Var 0.351 0.071
verb Var 0.883 0.183

I the effect of manner (non-)specification and semantic selectivity is
statistically non-significant and positive.

These results lead to the conclusion that the joint effect of the five predic-
tors of indefinite object drop in English can provide a good explanation
of the acceptability judgments relative to this phenomenon. Therefore,
this means that it will make sense to compute a linguistically-motivated,
probabilistic model of the effect of all the five predictors on the gram-
maticality of the implicit object construction. The implementation of this
model within the framework of Stochastic Optimality Theoretic (in the
linear variant defined by Medina (2007)) will be discussed in Chapter 9,
where I will also discuss its predictions relative to the grammaticality of
indefinite object drop in English and Italian, and perform a comparison
between my own results and the ones Medina obtained in her original
model.

8.3 Italian results

8.3.1 Semantic selectivity

The effect of semantic selectivity on the acceptability of the implicit
object in Italian is quantified by means of a Pearson correlation between
them. The results of this computation are visualized in Figure 8.8 for
Resnik’s SPS, in Figure 8.9 for Computational PISA, and in Figure 8.10
for Behavioral PISA.
What I observed in Section 8.2 about the correlations between the three
models of semantic selectivity and human judgments about object drop
in English still holds true, mutatis mutandis, when considering the Ital-
ian data. First of all, it appears that Resnik’s SPS is once again the
worst-performing model among the three (with a staggeringly low, non-
significant Pearson’s r of -0.055), Computational PISAmakes the situation
somewhat better but still not enough to be statistically significant (Pear-
son’s r = 0.223), and Behavioral PISA is quite a good model of semantic
selectivity (Pearson’s r = 0.481, p value = 0.007).
Once again, this state of affairs mirrors the situation depicted in Section
6.1.4 (see Table 6.3 in particular), where I made the case that Behavioral
PISA, the human judgment-based benchmark model of semantic selec-
tivity, correlates better with Computational PISA than with Resnik’s SPS.
Moreover, the non-significant correlation yielded by both Resnik’s SPS
and Computational PISA in Italian relative to the acceptability judgments
on the implicit object construction mirrors the high correlation shown
in Table 6.3 between Resnik’s SPS and Computational PISA. It would
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thus appear that the itWaC corpus has a stronger effect on the semantic
similarity measures based on it than ukWaC has on the ones computed
for English, as shown earlier in Section 6.1.4.
Concluding, Behavioral PISA is a satisfactory predictor of object drop
in Italian, with a correlation against human acceptability judgments on
object drop comparable with the one obtained by Behavioral PISA in
English (compare Figure 8.3 and Figure 8.10). However, as is the case
with English, Behavioral PISA is not able to fully predict the feasibility of
object drop for a given transitive verb.
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Figure 8.8: Correlation between semantic
selectivity (Resnik’s SPS) and normalized
acceptability judgments on object drop in
Italian.
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Figure 8.9: Correlation between semantic
selectivity (Computational PISA) and nor-
malized acceptability judgments on object
drop in Italian.

8.3.2 Binary predictors

Telicity The boxplots in Figure 8.11 illustrate the main effect of telicity
on the acceptability judgments on the implicit object construction in
Italian. A Mann-Whitney U test reveals that the median judgment for
atelic verbs (0.823) is significantly higher (p < 0.0001) than the median
judgment for telic verbs (0.384), consistently with abundant literature on
the effect of telicity on object drop (refer back to Section 3.2.1 and Section
6.2).
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Figure 8.10: Correlation between seman-
tic selectivity (Behavioral PISA) and nor-
malized acceptability judgments on object
drop in Italian.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

accoltellare

affettare

avvelenare

bere

cantarecanticchiare

costruire

cucinare

cucire

decapitare

divorare

firmare

fumare

guardare

insegnarelavare

lucidare

mangiarepulire

ricamare

rompere

rubare

scarabocchiare
scrivere

sorseggiare

spaccare

tagliare

trangugiare

uccidere

versare

Behavioral PISA
av
er
ag

e
ac
ce
pt
ab

ili
ty

ju
dg

m
en

t �=0.481, p=0.007

The interquartile ranges of telic and atelic verbs do not overlap, as shown
in the boxplots, but the overall distributions of ratings for the two types
of verbs do indeed overlap for the most part. This shows that, despite the
high statistical significance of the difference in judgments between telic
and atelic verbs, telicity alone is not a sufficient predictor of object drop
in Italian.

Figure 8.11: Effect of telicity on normal-
ized acceptability judgments about object
drop in Italian.
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Perfectivity The boxplots in Figure 8.12 illustrate the main effect of
perfectivity on the acceptability judgments on the implicit object con-
struction in Italian. The median rating for imperfective stimuli (0.670)
is significantly higher (p < 0.05) than the median rating for perfective
stimuli (0.562), consistently with the hypothesis (refer back to Section
3.2.2 and Section 6.3).
However, the distribution of ratings for both imperfective and perfective
stimuli is quite sparse, and thus there is significant overlap between them.
The significant main effect of perfectivity on the grammaticality of the
implicit object construction cannot be considered reason enough to use it
as the sole predictor of object drop.
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Figure 8.12: Effect of perfectivity on nor-
malized acceptability judgments about ob-
ject drop in Italian.

Iterativity The boxplots in Figure 8.13 illustrate the main effect of itera-
tivity on the acceptability judgments on the implicit object construction
in Italian. Interestingly, both in English (see Section 8.2) and Italian
there is no significant main effect of iterativity on the grammaticality of
the implicit object construction, and once again the question arises of
whether this depends on the weakness of this factor if compared against
the other predictors, or whether it will be solved by considering its action
in a joint statistical model of all five predictors. The median for iterative
stimuli is indeed higher than the median for non-iterative stimuli (0.659
the former, 0.645 the latter), consistently with literature on the matter
(refer back to Section 3.3.2 and Section 6.4), but the difference is way too
small to even approach statistical significance. Moreover, there is almost
complete overlap between the distributions of judgments for both types
of stimuli.
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Figure 8.13: Effect of iterativity on normal-
ized acceptability judgments about object
drop in Italian.

Manner specification The boxplots in Figure 8.14 illustrate the main
effect of manner specification on the acceptability judgments on the
implicit object construction in Italian. A Mann-Whitney U test reveals
the difference between the medians of judgments for manner-specified
(0.469) and manner-unspecified (0.833) verbs to be statistically significant
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(p < 0.0001), consistently with expectations (refer back to Section 3.1.3
and Section 6.5).
The distribution of ratings for manner-unspecified verbs is tighter than
the distribution of ratings for manner-specified verbs, but there is still
relevant overlap between them despite the high statistical significance of
their difference.

Figure 8.14: Effect of manner specification
on normalized acceptability judgments
about object drop in Italian.
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8.3.3 Joint effect of predictors

Mirroring what I did in Section 8.2.3 about English, I will now report
the results of three linear-mixed effects models (one for each different
measure of semantic selectivity) I computed to account for the joint effect
of my five predictors of object drop on the acceptability ratings provided
by native speakers of Italian. These models are reported in:

I Table 8.4 (conditional R2 = 0.47,marginal R2 = 0.14), where semantic
selectivity is measured with Resnik’s SPS;

I Table 8.5 (conditional R2 = 0.47,marginal R2 = 0.14), where semantic
selectivity is measured with Computational PISA;

I Table 8.6 (conditional R2 = 0.47,marginal R2 = 0.15), where semantic
selectivity is measured with Behavioral PISA.

It appears that, in Italian as in English, the three models have the
same total explanatory power (as quantified by the conditional R2), but
Behavioral PISA is the best measure of semantic selectivity if compared
with Resnik’s SPS and Computational PISA because it contributes to
determine, ceteris paribus, the best linear mixed-effects model when only
considering the fixed effects.
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Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 4.677 0.255 18.367 0.000 4.178 5.176
tel[atelic] 0.950 0.279 3.402 0.001 0.403 1.498
perf[imperf] 0.308 0.041 7.610 0.000 0.229 0.388
iter[iter] 0.061 0.041 1.495 0.135 -0.019 0.140
spec[nospec] 0.550 0.279 1.976 0.048 0.004 1.096
sps -0.093 0.131 -0.709 0.478 -0.351 0.164
subject Var 0.403 0.090
verb Var 0.489 0.115

Table 8.4: Linear mixed-effects model of
the five predictors of object drop in Italian
as fixed effects, with verb and participant
subject as random effects, measuring se-
mantic selectivity with Resnik’s SPS.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 4.674 0.266 17.550 0.000 4.152 5.196
tel[atelic] 0.970 0.288 3.369 0.001 0.406 1.535
perf[imperf] 0.308 0.041 7.610 0.000 0.229 0.388
iter[iter] 0.061 0.041 1.495 0.135 -0.019 0.140
spec[nospec] 0.533 0.286 1.863 0.062 -0.028 1.094
cpisa -0.033 0.141 -0.237 0.813 -0.310 0.243
subject Var 0.403 0.090
verb Var 0.498 0.117

Table 8.5: Linear mixed-effects model of
the five predictors of object drop in Ital-
ian as fixed effects, with verb and partici-
pant subject as random effects, measuring
semantic selectivity with Computational
PISA.

Coef. Std.Err. z P>|z| [0.025 0.975]
Intercept 4.800 0.280 17.150 0.000 4.252 5.349
tel[atelic] 0.830 0.311 2.668 0.008 0.220 1.439
perf[imperf] 0.308 0.041 7.610 0.000 0.229 0.388
iter[iter] 0.061 0.041 1.495 0.135 -0.019 0.140
spec[nospec] 0.454 0.281 1.614 0.106 -0.097 1.005
bpisa 0.140 0.155 0.903 0.367 -0.164 0.443
subject Var 0.403 0.090
verb Var 0.483 0.114

Table 8.6: Linear mixed-effects model of
the five predictors of object drop in Italian
as fixed effects, with verb and participant
subject as random effects, measuring se-
mantic selectivity with Behavioral PISA.

The threemodels all converge, and for themost part they yield comparable
results. In more detail, they show that:

I the effect of (a)telicity and (im)perfectivity is statistically significant
and positive;

I the effect of manner (non-)specification is positive, but only statisti-
cally significant in the model quantifying semantic selectivity with
Resnik’s SPS;

I the effect of iterativity is statistically non-significant and positive;
I the effect of semantic selectivity, which is never statistically sig-

nificant, is slightly negative in the models using Resnik’s SPS and
Computational PISA, but positive in the model using Behavioral
PISA (consistently with everything I observed in this Chapter about
the three different models of semantic selectivity in Italian).

As noted before about English, these models of the joint effect of the
five predictors of object drop on the acceptability judgments in Italian
support the creation of a Stochastic Optimality Theoretic model of the
implicit object construction, despite the different (sometimes absent)
statistical significance of the individual linguistic factors.
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8.4 Closing remarks

The univariate analysis of the binary predictors of indefinite object drop
showed that all of themdiscriminate significantly between the two groups
of stimuli determined by each predictor (the group where the feature is
present, and the groupwhere it is absent), with the exception of iterativity.
Moreover, there is a significant correlation between semantic selectivity
(when measured with PISA models in English and with Behavioral PISA
in Italian) and the acceptability judgments provided by participants to
the behavioral experiment.
At this point, does it make sense to compute a model of object drop
considering the joint effect of all five predictors? I answered positively to
this question by means of linear mixed-effects models for English and
Italian, which all converged on significant results. These results also point
out that the models for English are consistently, albeit just slightly, better
than the models for Italian computed with the same set of predictors.
This may depend on the corpora of choice (ukWaC for English, itWaC for
Italian), on the way the participants to the experiments behaved when
providing judgments (despite the strict protocol in Section 7.5), and also
on idiosyncratic characteristics of the two languages under scrutiny. I
will also engage in similar considerations in Chapter 9.
The convergence of the linear mixed-effect models proves that a model of
object drop considering the joint effect of all five predictors is indeed able
to account for a non-negligible amount of variance in the data. Given
these results, what would the added value of a Stochastic Optimality
Theoretic model (in the novel linear, non-gaussian way introduced in
Chapter 5) of indefinite object drop be? The best answer to this question
was already provided byMedina (2007) herself, the ideator of the original
model. This thesis (and hers) concerns itself with creating a linguistic
model of the grammaticality of the implicit indefinite object construction,
with explicit constraints whose violations determine which output will
be the favored one among a set of possible candidates for a given input.
A linear mixed-effects model provides a statisticalmodel that computes
the relative grammaticality of a candidate as a sum of weighted variables,
whereas the Stochastic Optimality Theoretic model by Medina computes
it as the sum of the probabilities of constraint orderings.Most importantly,
Medina’s mathematical model keeps the input, the candidate set, the
constraints, and the probabilities of constraint re-ordering explicit and
knowable in every step of the computation, while in the mixed model
they are all collapsed together in the weights the model computes under
the hood. I will come back to the relationship between regression models
and Medina’s stochastic model in Section 9.3.2.
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In this Chapter I will model the grammaticality of the implicit object
construction (refer to Chapter 2) in a Stochastic Optimality Theoretic
fashion inspired by Medina (2007) (refer to Chapter 4 and Chapter 5),
using five aspectual and semantic factors (refer to Chapter 3 and Chapter
6) as constraints in several models of human acceptability judgments
(refer to Chapter 7) in English and Italian. Based on the results of these two
behavioral experiments described in Chapter 8, I present a linguistically-
motivated probabilistic model of object drop considering the joint effect
of all five predictors, which is able to account for the behavioral data I
collected.
In particular, I will outline the models in Section 9.1, I will delve into
the finer details of the full English and Italian models of object drop as
a function of Behavioral PISA (introduced in Section 6.1.3) in Section
9.2, and I will draw some conclusions about relevant linguistic and
mathematical aspects of these models in Section 9.3.

9.1 Introduction

9.1.1 Models

In this thesis, I build upon the foundations laid by Medina (2007), which
I detailed in Chapter 5. In a nutshell, her Stochastic Optimality Theoretic
analysis of the implicit object construction was focused on English, and
used a set of only three predictors (semantic selectivity, telicity, and
perfectivity) as constraints in the model. Moreover, she measured the
verbs’ semantic selectivity using the Selectional Preference Strength
values originally computed by Resnik (1993, 1996), which poses clear
limitations in the choice of transitive verbs to include in the model and
which also suffers from some computational drawbacks due to being a
taxonomy-based measure (more on this in Section 6.1.4).
Expanding on Medina’s successful model of object drop, I bring several
new ideas to the table:

I quantifying semantic selectivity with two similarity-based mea-
sures, i.e., a novel computational measure I contributed to develop
inCappelli andLenci (2020) (Computational PISA, see Section 6.1.2),
and a behavioral measure that improves on Medina’s measure of
Object Similarity (Behavioral PISA, see Section 6.1.3);

I modeling the implicit object construction both in English and in
Italian, comparing the performance of the two models and possible
language-dependent differences in the constraint re-ranking;

I computing increasingly more complex Stochastic Optimality Theo-
retic models of object drop, starting with Medina’s three-predictor
model, adding iterativity as a predictor in an intermediate model,
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and computing the full five-predictor model also including manner
specification among the predictors.

These additions to Medina’s setting resulted in a grand total of 18 models
of the implicit object construction, which are summarized in Table 9.1 for
the reader’s convenience.

Table 9.1: The 18 Stochastic Optimality
Theoretic models of object drop I com-
puted for English and Italian.

SPS Comp PISA Behav PISA
StOT basic eng | ita eng | ita eng | ita
StOT +iter eng | ita eng | ita eng | ita
StOT +iter +spec eng | ita eng | ita eng | ita

The basic Stochastic Optimality Theoretic model of English judgments
using Resnik’s SPS as a measure of semantic selectivity is, as recalled
earlier in this Section, a replication of the model by Medina (2007)
employing the same constraints and acceptability judgments based on
the same experimental protocol (but with different target verbs and an
updated computational preprocessing pipeline, as explained in Chapter
7 and Chapter 8). The other 17 models are instead new.
Naturally, one could askwhy it is iterativity, and notmanner specification,
the predictor of object drop to be included in the intermediate Stochastic
Optimality Theoretic models. After all, the main effect of iterativity
was shown to be non-significant in Figure 8.6 and Figure 8.13 both for
English and Italian, unlike the very significant main effect of manner
specification in both languages (refer back to Figure 8.7 and Figure 8.14).
Crucially though, I am creating probabilistic models considering the
joint effect of five linguistic factors on the grammaticality of the implicit
object construction. Since the linear mixed-effects models for English (see
Section 8.2.3) revealed a highly significant effect of iterativity and a non-
significant effect of manner specification, while the two predictors were
almost equally non-significant in themixedmodels for Italian (see Section
8.3.3), it appeared that iterativity plays a larger role in determining the
grammaticality of object drop when considered in combination with all
the other linguistic factors involved.

9.1.2 Input, output, and constraints

A very short summary of the lengthy explanation of (Stochastic) Optimal-
ity Theory I provided in Chapter 4, and especially of the explanation of
the novel variant by Medina (2007) in Chapter 5, is in order. In particular,
I am going to retrace the way the input to the optimization process maps
to the output, and I will introduce my two novel constraints after looking
back on Medina’s original set.
As shown in (3) in Section 5.1, the input to the syntactic optimization
operated by the model has to include all the relevant lexical and semantic
information that will be mapped to syntactically well-formed output
forms, and nothing else. Thus, the input to my basic Stochastic Optimality
Theoretic models (and Medina’s) will look like (1-a), the input to the
intermediate models will look like (1-b), and the input to the full models
with all five predictors will look like (1-c). All inputs in (1) contain a
transitive verb with a subject and an unspecified direct object (since
the model deals with indefinite, not definite, object drop), a numerical
value for semantic selectivity (be it Resnik’s SPS, Computational PISA, or
Behavioral PISA), the [+Past] feature since all verbs in the stimuli are in
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the past tense, and the features of the predicate relative to all the binary
predictors that are relevant in the model (two in the basic model, three
in the intermediate model, four in the full model).

(1) a. verb (x,y), x = subject, y = unspecified, semantic selectivity =
numerical value, [+ Past], [± Telic], [± Perfective]

b. verb (x,y), x = subject, y = unspecified, semantic selectivity =
numerical value, [+ Past], [± Telic], [± Perfective], [± Iterative]

c. verb (x,y), x = subject, y = unspecified, semantic selectivity =
numerical value, [+ Past], [± Telic], [± Perfective], [± Iterative],
[±Manner-Specified]

Given these inputs, the Gen component of the Optimality Theoretic
grammar (see Section 4.1) generates two outputs, i.e., one with an overt
(unspecified) direct object and one with an implicit (namely, omitted)
direct object.
As soon as the grammar yields a complete candidate set to evaluate, the
model has to pick awinner (or, in our case, assign gradient grammaticality
to the implicit object output in a probability space) based on the re-ranking
of the relevant constraints. For the basic model, these are the ones in (2)
(adapted from Medina’s ones in (12), introduced in Section 5.3).

(2) a. *Int Arg (*Internal Argument Structure)
The output must not contain an overt direct object.

b. Faith Arg (Faithfulness to Argument Structure)
All arguments in the input must be present in the output.

c. Telic End (Telic Endpoint)
Telic predicates must be bounded by an object in the output.

d. Perf Coda (Perfective Coda)
Perfective predicates must have a direct object in the output.

I also designed the two novel constraints in (3), based on theoretical
observations on iterativity and manner specification first introduced in
Chapter 3 and explored further in Chapter 6. Non-Iter Arg is active both
in the intermediate and in the full model, while Mann-Spec Arg is only
active in the full model.

(3) a. Non-Iter Arg (Non-Iterative Argument)
Non-iterative predicates must occur with a direct object in the
output.

b. Mann-Spec Arg (Manner-Specified Argument)
Manner-specified verbs must occur with a direct object in the
output.

In allmyStochasticOptimalityTheoreticmodels, *Int Arg is amarkedness
constraint that gets violated when there is an overt direct object in the
output, directly conflicting with all the other constraints, which are
faithfulness constraints penalizing implicit objects. This conflict between
markedness and faithfulness constraints is the very core of an Optimality
Theoretic grammar (refer back to Chapter 4).
In the specific case of this thesis, an implicit object output will be
(probabilistically) grammatical whenever *Int Arg is ranked above all
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1: As explained in detail in Section 5.3, a
constraint is vacuously satisfied when no
candidate in the candidate set can violate
it.

2: The Pearson’s r coefficient measuring
the correlation between two variables can
vary between -1 and 1. The strength of the
correlation is judged by considering the
absolute value of the coefficient, so that
it is non-existent when r is 0, very strong
when it is closer to (-)1. If r is positive the
two variables are directly proportional one
to another, while if it is negative they are
indirectly proportional.

the other constraints that are active (i.e., not vacuously satisfied1 ) for
a given input. For instance, the full, five-predictor model would only
favor object-dropping telic, perfective, non-iterative, manner-specified
candidates if *Int Arg were ranked above Faith Arg, Telic End, Perf
Coda, Non-Iter Arg, and Mann-Spec Arg. The same model would only
require *Int Arg to be ranked above Faith Arg to allow for object drop
in atelic, imperfective, iterative, manner non-specified candidates. As
explained in Chapter 5, Medina (2007) uses semantic selectivity not as
a constraint itself, due to it being a continuous factor, but as a way to
re-rank the other constraints with respect to *Int Arg. I am going to
go back on this line of reasoning (and the underlying math) in Section
9.2.2.

9.1.3 Model comparison

Let us put aside the inner workings of Medina-inspired Stochastic Opti-
mality Theoretic models for the time being, and let us consider whether
increasing the number of predictors (and thus the number of constraints)
actually determines a better understanding of the nature of the implicit
object construction. I am going to come back to the mathematical details
of the model in Section 9.2, where I will focus on the two best-performing
models, one for English and one for Italian. Unfortunately, it would be
impossible to provide a complete account of all 18 models in Table 9.1
due to space constraints, but the interested reader can find graphical
summaries of their results in Appendix E.

English An initial step to assess the absolute performance of each
model, and hence to compare them and gauge their performance relative
to each other, would be to compute Pearson correlations2 between the
actual acceptability judgments provided by native speakers and the
predicted grammaticality values yielded by each model. The Pearson’s r
coefficients for English, all highly significant (p < 0.001), are collected in
Table 9.2. These results show that the predicted values correlate quite well
with the human-generated values in each model, going from 0.661 for the
basic model using Resnik’s SPS as a measure of semantic selectivity to
0.700 for the full model using Behavioral PISA as a measure of semantic
selectivity.

Table 9.2: Pearson correlations between
actual and predicted values for the nine
Stochastic OT models of object drop in
English.

SPS Comp PISA Behav PISA
StOT basic 0.661 0.686 0.693
StOT +iter 0.664 0.689 0.696
StOT +iter +spec 0.670 0.691 0.700

However, the correlation coefficient only serves to quantify the strength of
the linear relationship between actual and predicted judgments, without
providing any information on how well the independent variables in
the model (i.e., the predictors) explain the variance in the dependent
variable (i.e., the acceptability judgments). I gleaned this information by
computing the adjusted R2 value for each model, obtaining the results in
Table 9.3 relative to English.
The R-squared value, also known as "coefficient of determination", can
be computed as the squared Pearson’s r or, alternatively, as in Equation
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9.1 (with the Summed Squared Error computed as in Equation 9.2 and
the Total Sum of Squares computed as in Equation 9.3).

'2 = 1 −
Summed Squared Error
Total Sum of Squares

(9.1)

The Summed Squared Error, computed with Equation 9.2, is defined as
the sum of the squared difference between each actual judgment and its
corresponding judgment predicted by the model, for all judgments in
the sample.

((� =

=∑
8=1
(H8 − Ĥ)2 (9.2)

The Total Sum of Squares is defined as the sum of the squared difference
between each acceptability judgment in the sample and the average
acceptability judgment, for all judgments in the sample. This is shown in
Equation 9.3.

)(( =

=∑
8=1
(H8 − H)2 (9.3)

R2 varies between 0 and 1, and it can be thought of as a percentage
indicating the goodness of fit of a statistical model. However, it always
increases when using additional predictors in a model, regardless of the
usefulness of these variables in predicting the dependent variable. One
could always add yet one more parameter to the model, overfit it to the
data, and claim to have a very successful model due to a very high R2

value. In order to overcome this major drawback of R2, it is recommended
to compute an adjusted R2 value that only increases when adding relevant
parameters, while it decreases when adding useless ones. It is defined as
in Equation 9.4, where = is the number of acceptability judgments to be
predicted and : is the number of independent variables (i.e., predictors)
in the model, and it can be thought of as the percentage of variance
explained by the sole indipendent variables that have an actual effect on
the dependent variable.

adjusted '2 = 1 − (1 − '
2)(= − 1)

= − : − 1
(9.4)

Let us close this much needed statistical parenthesis and go back to the
summary of the English results. Oddly enough, Medina (2007, p. 147)
limited hermodel assessment to the computation of the Summed Squared
Error instead of also using it to compute the (adjusted) R2 value, which
makes it impossible to compare mathematically her results and the
ones I obtained in the basic model using Resnik’s SPS as a measure of
semantic selectivity. Moreover, the Summed Squared Error does not have
an intrinsic meaning (unlike R2), since it just increases whenever the total
number of stimuli in the experiment increases (provided there is some
difference between the actual and predicted values).
According to the adjusted R2 values in Table 9.3, the nine models explain
between 42.1% (intermediate model with Resnik’s SPS) and 46.8% (full
model with Behavioral PISA) of the variation in the data. Given the
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complex nature of the implicit object construction and the interaction
between all the predictors, these results, though modest in absolute
terms, are quite encouraging.

Table 9.3: Adjusted R2 values for the nine
Stochastic OT models of object drop in
English.

SPS Comp PISA Behav PISA
StOT basic 0.422 0.457 0.467
StOT +iter 0.421 0.456 0.466
StOT +iter +spec 0.425 0.454 0.468

Let us inspect Table 9.3 in more detail. Looking at it horizontally, i.e.,
comparing the performance of each type of model (basic, intermediate,
full) onvarying themeasure of semantic selectivity, it emerges thatmodels
using Behavioral PISAhave a better explanatory power thanmodels using
Computational PISA, which in turn are better thanmodels using Resnik’s
SPS, regardless of the number of predictors in the model. Looking at the
table vertically, i.e., comparing the performance of the three increasingly
rich models of object drop based on the same measure of semantic
selectivity, it results that the intermediate model is consistently worse
(albeit imperceptibly) than the basic model regardless of the measure
of semantic selectivity, while the addition of manner specification as
a predictor in the full model makes it a better fit when using Resnik’s
SPS and Behavioral PISA, but a slightly worse fit than the intermediate
model when using Computational PISA. Moreover, consistently with
conclusions drawn in Section 8.2.1, the difference in performance between
the models based on Computational PISA and those based on Behavioral
PISA is much lower than the difference between either of those and
the models based on Resnik’s SPS. In general, it is possible to conclude
that a full, five-predictor model is an appropriate choice to model the
grammaticality of the implicit object construction in English, and the
best model among the three full models is the one using Behavioral PISA
to quantify semantic selectivity. I will provide a thorough analysis of this
model in Section 9.2.

Italian Let us now examine the performance of the nine Stochastic
Optimality Theoretic models of object drop in Italian and compare it to
the results for English I just discussed. The Pearson correlations between
actual and predicted grammaticality judgments in Table 9.4, all highly
significant (p < 0.001), show varying degrees of reliability ranging from
0.621 for basic and intermediate models using Computational PISA to
0.694 for the full model using Resnik’s SPS. As for English, I evaluated the
goodness-of-fit of the nine models for Italian by computing the adjusted
R2 values in Table 9.5. These coefficients show that some models are a
fairly poor fit (especially the intermediate model using Computational
PISA, which only explains 36.5% of the variance in the data), and only
two of them have a performance comparable with the English models
(the full model using Resnik’s SPS explains 45.8% of the variance, the
full model using Behavioral PISA explains 45.5%).

Table 9.4: Pearson correlations between
actual and predicted values for the nine
Stochastic OT models of object drop in
Italian.

SPS Comp PISA Behav PISA
StOT basic 0.637 0.621 0.655
StOT +iter 0.637 0.621 0.655
StOT +iter +spec 0.694 0.655 0.692

Taking a closer look at Table 9.5, severals conclusions can be drawn.
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SPS Comp PISA Behav PISA
StOT basic 0.391 0.370 0.414
StOT +iter 0.386 0.365 0.410
StOT +iter +spec 0.458 0.404 0.455

Table 9.5: Adjusted R2 values for the nine
Stochastic OT models of object drop in
Italian.

Looking at it line-by-line, it appears that Computational PISA-based
models are consistently the worst for each type of Stochastic Optimality
Theoretic model and Behavioral PISA-based models are the best (it
actually loses to Resnik’s SPS in the case of the full models, but only by
a negligible 0.3% difference). Looking at it column-by-column, results
show that the intermediate model is consistently worse than the basic
model, which in turn is consistently worse than the full model, indicating
that iterativity alone is not a good addition to the basic three-predictor
model devised byMedina (2007), but iterativity andmanner specification
together provide the model with a much stronger explanatory power.
Interestingly, there is a stark difference between the performance of
Behavioral PISA-based models on one hand, and the performance of
models using corpus-based measures of semantic selectivity (Resnik’s
SPS and Computational PISA) on the other hand. This state of affairs
mirrors closely the conclusions I drew in Section 8.3.1 about the way
these measures of semantic selectivity were computed, also in contrast
with English results. All in all, we can conclude that it makes sense to
compute a five-predictor model to understand the factors regulating the
implicit object construction in Italian, and it is best to implement semantic
selectivity in such a model using Behavioral PISA despite the remarkable
performance of the full SPS-based model (given all the drawbacks of
Resnik’s SPS which I pointed out throughout this Section and in Chapter
8). These results should not surprise, considering that computational
models are by their very nature approximations of human judgments
relative to selectional preferences of verbs.

Comparing English and Italian By looking at Table 9.3 and Table 9.5
in particular, it is evident that any given model using the same set of
predictors and the same measure of semantic selectivity fits English data
better than Italian data, with this difference beingwaymore noticeable for
models employing corpus-based measures of semantic selectivity than
for models using Behavioral PISA (based on human similarity ratings) for
the same purpose. As observed several times here and in Chapter 8, this
may be most likely due to the better overall quality of the ukWaC corpus
I used to model English if compared to itWaC (refer back to Section 6.1.2
for more details on the two corpora).
Another intriguing difference between English and Italian relative to
object drop that emerges by comparing Table 9.3 and Table 9.5 is that
the addition of manner specification to the model determines a veritable
qualitative leap in the case of Italian, where the full models are way
better than the basic and intermediate ones, while the same is not true of
English, where the performance of full models is quite similar (although
slightly better) to that of basic and intermediate models. Given that all
other factors in the models, as well as the stimuli used in the experiments,
are identical in all respects but the language itself, we can surmise that
this difference between English and Italian models has to be ascribed to
manner specification itself. We could be tempted to seek an explanation
in the well-known distinction between verb-framed and satellite-framed
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3: *Int Arg has to be ranked above all the
other active constraints for a given input
in order to obtain an implicit object output
(see Section 5.3 and Section 9.1.2)

4: In order to save space, in Table 9.6 Faith
Arg, Telic End, Perf Coda, Non-Iter Arg,
and Mann-Spec Arg are referred to as F,
T, P, N, and M, respectively.

languages proposed by Talmy (1991, 2000) with respect to motion verbs.
Verb-framed languages, such as Italian, typically encode the Path of
motion in the verb root, while they (optionally) express the manner of
motion via additional lexical material (e.g., uscì correndo, lit. ’he/she
went-out running’). Satellite-framed languages, such as English, typically
encode the manner of motion in the verb root and make use of particles
to encode the Path of motion (e.g., to go in, to fall down). Looking at Table
9.3 and Table 9.5 through Talmy-styled lenses, it would seem that Italian
speakers are much more sensitive to manner being encoded in the verb
root than English speakers due to Italian being a verb-framed language,
despite there being no framing-dependent differences in the surface form
of the verbs used in the stimuli (e.g., Eng. to devour / It. divorare). On the
flip side, the distinction between verb- and satellite-framed languages
seems to have much less hold outside the domain of motion verbs (see
Mastrofini (2013) about manner-of-speaking verbs in English and Italian),
and therefore it is possible that the explanation for the spike in the
Italian (and not in the English) adjusted R2 values due to the manner
specification parameter has to be found elsewhere.

9.2 A full account of the full models

In this Section, I will only discuss two of the 18 models in Table 9.1,
namely the best-performing model of object drop in English and the best
model for Italian. The interested reader can find a summary of the other
models in Appendix E.
Based on Table 9.3, the best-performing model of the implicit object
construction in English is the full model making use of Behavioral PISA
to measure semantic selectivity. As for Italian, I would have to choose
the full model quantifying semantic selectivity with Resnik’s SPS based
on the results in Table 9.5, but I will instead present and discuss the
full model using Behavioral PISA thanks to the negligible R2 difference
between this model and the one using Resnik’s SPS in Italian. Crucially,
this choice will make it possible to compare the English and the Italian
models, since it minimizes the differences between them.

9.2.1 A quick recap

I will now go over the logic behind Medina’s variant of Stochastic
Optimality Theory (first introduced in Chapter 5) which I am using to
compute the full models of the gradient grammaticality of object drop in
English and Italian. In a nutshell,

1. theprobability of *Int Argdominating eachof the other constraints3
is expressed as a function of the input verb’s semantic selectivity
(which I compute using Resnik’s SPS, Computational PISA, and
Behavioral PISA);

2. the values of the function are used to compute the relative prob-
abilities of each of the 16 possible re-rankings of *Int Arg with
respect to the five other constraints at play (see Table 9.6)4 ;

3. these relative probabilities determine the relative probability (and
thus grammaticality) of the implicit object output for a given input,
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depending on the input’s semantic selectivity score and binary
aspectual features.

*Int Arg� {F, T, P, N, M}
T� *Int Arg� {F, P, N, M}
P� *Int Arg� {F, T, N, M}
{T, P}� *Int Arg� {F, N, M}
M� *Int Arg� {F, T, P, N}
{M, T}� *Int Arg� {F, P, N}
{M, P}� *Int Arg� {F, T, N}
{M, T, P}� *Int Arg� {F, N}
N� *Int Arg� {F, T, P, M}
{N, T}� *Int Arg� {F, P, M}
{N, P}� *Int Arg� {F, T, M}
{N, T, P}� *Int Arg� {F, M}
{M, N}� *Int Arg� {F, T, P}
{M, N, T}� *Int Arg� {F, P}
{M, N, P}� *Int Arg� {F, T}
{M, N, T, P}� *Int Arg� F

Table 9.6: Set of the 16 possible re-rankings
of *Int Arg with respect to Faith Arg,
Telic End, Perf Coda, Non-Iter Arg, and
Mann-Spec Arg, these being unordered
with respect one to another.

As explained in Chapter 5 relative to Medina’s (2007) model, each re-
ranking in Table 9.6 yields an implicit object output if *Int Arg is ranked
above all the active constraints for a given input. Thus, for instance,
the first re-ranking always yields an implicit object output regardless
of the aspectual features of the input, because *Int Arg outranks all
the other constraints. The second re-ranking, T � *Int Arg � {F, P,
N, M}, only yields an implicit object output for atelic inputs (because
they vacuously satisfy the Telic End constraint). For the same reason,
the re-ranking {N, T, P} � *Int Arg � {F, M} would yield an implicit
object output only for inputs where Non-Iter Arg, Telic End, and Perf
Coda are vacuously satisfied, namely, iterative, atelic, imperfective inputs.
Finally, the last re-ranking would only yield an implicit object output for
manner-unspecified, iterative, atelic, imperfective inputs, given that *Int
Arg only outranks Faith Arg.
As shown in Table 5.7, the actual computational steps needed to model
object drop go backwards with respect to the three-step logic I summed
up just now. Recalling the summary ofMedina’s computational reasoning
in Section 5.5, I will follow the exact same procedure:

1. the grammaticality of the indefinite object drop is quantified via
an acceptability judgment survey (refer back to Chapter 7 for the
experimental setting and to Chapter 8 for the results), the results
thereof are equated to the probability of an implicit object output
for a given input;

2. the probability of each of the 16 possible constraint orderings in
Table 9.6 can be estimated via the probability of an implicit object
output (i.e., the average judgment for a given input, normalized
between 0 and 1);

3. knowing the probability of each constraint ordering, it is possible
to estimate the probability of *Int Arg dominating each constraint
and, finally, the probability of obtaining an implicit object output
with each type of input.

In particular, I will assess the mathematical procedure in Section 9.2.2,
while I will discuss the probability of *Int Arg dominating each of the
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other five constraints and the probability of each type of input resulting in
an implicit object output in Section 9.2.3 and Section 9.2.4, respectively.

9.2.2 Fitting the model

In the full StochasticOptimality Theoreticmodel(s) I amgoing to compute,
based on my four binary predictors, there are 16 different types of input.
The combinatory logic behind this result is shown in Table 9.7.

Table 9.7: The four binary constraints in
the full Stochastic Optimality Theoretic
model give rise to 16 different types of
inputs.

telicity perfectivity iterativity manner specification
input 1 + + + +
input 2 + + + -
input 3 + + - +
input 4 + + - -
input 5 + - + +
input 6 + - + -
input 7 + - - +
input 8 + - - -
input 9 - + + +
input 10 - + + -
input 11 - + - +
input 12 - + - -
input 13 - - + +
input 14 - - + -
input 15 - - - +
input 16 - - - -

As stated in Section 9.2.1, the probability of an implicit object output for
each type of input in Table 9.7 is equal to the normalized acceptability
rating attributed to that specific input. Then, this rating-as-probability is
equated to the probability sum of all the rankings in Table 9.6 where *Int
Arg is ranked above all the relevant, active constraints for the specific
type of input under consideration. So, for instance, the probability of
an implicit object output for a telic, perfective, non-iterative, manner-
specified input is computed as in Equation 9.5, since this input violates all
the five faithfulness constraints at play, making it necessary to have *Int
Arg outranking all of them for an implicit object output to be licensed
by the model. The probability of an implicit object output for an atelic,
perfective, non-iterative, manner-specified input, instead, is computed as
in Equation 9.6 because the Telic End constraint is vacuously satisfied
by atelic inputs. For the same reason, the probability of an implicit object
output for atelic, imperfective, iterative, manner-unspecified inputs is
computed as in Equation 9.7, i.e., as the probability sumof all the rankings
in Table 9.6 (since these inputs vacuously satisfy all the constraints in the
model with the exception of Faith Arg).
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5: Such as the stimulus sentence Betty had
beheaded.

6: Such as the stimulus sentence Paul had
doodled.

?(implicit)Tel Perf Non-Iter Spec = ?(∗� � �, ), %, #, ") (9.5)
?(implicit)Atel Perf Non-Iter Spec = ?(∗� � �, ), %, #, ")+
+ ?() � ∗� � �, %, #, ") (9.6)
?(implicit)Atel Imperf Iter Non-Spec = ?(∗� � �, ), %, #, ")+
+ ?() � ∗� � �, %, #, ") + ?(% � ∗� � �, ), #, ")+
+ ?(), % � ∗� � �, #, ") + ?(" � ∗� � �, ), %, #)+
+ ?(",) � ∗� � �, %, #) + ?(", % � ∗� � �, ), #)+
+ ?(",), % � ∗� � �, #) + ?(# � ∗� � �, ), %, ")+
+ ?(#,) � ∗� � �, %, ") + ?(#, % � ∗� � �, ), ")+
+ ?(#,), % � ∗� � �, ") + ?(", # � ∗� � �, ), %)+
+ ?(", #, ) � ∗� � �, %) + ?(", #, % � ∗� � �, ))+
+ ?(", #, ), % � ∗� � �) (9.7)

Knowing the probability of an implicit object output for each type of
input (i.e., the normalized judgment for that type of input), and knowing
the computation of the probability sums of relative rankings which
give rise to it (as just shown briefly in Equation 9.5 to Equation 9.7),
it is now possible to compute the probability of *Int Arg dominating
each of the other five constraints, which will be used later to determine
the parameters of the model itself. Limiting my examples to two types
of input to avoid encumbering the reader with unnecessary details,
the probability of an implicit object output for a telic, perfective, non-
iterative, manner-specified input5 (computed before in Equation 9.5) can
be unpacked as in Equation 9.8, while the probability of an implicit object
output for an atelic, perfective, non-iterative, manner-specified input6
(computed before in Equation 9.6) can be unpacked as in Equation 9.9.
The reason behind this calculation was illustrated in Section 5.4.3, where
I explained that, in Medina’s (2007) original model, the probability of
each individual re-ranking ordering is equal to the joint probabilities of
the independent pairwise orderings that comprise it. Thus, for instance,
the probability of *Int Arg outranking all the other five constraints at
play (see Equation 9.5) is equal to the joint probabilities (refer to Page 80)
of *Int Arg outranking Faith Arg, *Int Arg outranking Telic End, *Int
Arg outranking Perf Coda, *Int Arg outranking Non-Iter Arg, and *Int
Arg outranking Mann-Spec Arg (see Equation 9.8).

?(implicit)Tel Perf Non-Iter Spec = ?(∗� � �) · ?(∗� � )) · ?(∗� � %)·
· ?(∗� � #) · ?(∗� � ") (9.8)
?(implicit)Atel Perf Non-Iter Spec = ?(∗� � �) · ?(∗� � )) · ?(∗� � %)·
· ?(∗� � #) · ?(∗� � ") + ?(∗� � �) · [1 − ?(∗� � ))]·
· ?(∗� � %) · ?(∗� � #) · ?(∗� � ") (9.9)

As introduced in Section 5.4, the main innovation by Medina (2007)
within the landscape of Stochastic Optimality Theory is the definition of
the ranking of *Int Arg with respect to each of the other constraints at
play as a (linear) function of the input verb’s semantic selectivity. Such a
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function takes the shape of Equation 9.10 (updating Equation 5.1 with
the use of Behavioral PISA instead of Resnik’s SPS). In these equations,
the � and � parameters are, respectively, the values the function takes
at mininum and maximum Behavioral PISA. As explained in Chapter 5
and in the rest of this Section, creating a model of indefinite object drop
in this framework boils down to estimating the � and � parameters (and
minimizing the Summed Squared Error between actual and predicted
judgments).

?(*Int Arg � con) = �: − �:
bPISA<0G − bPISA<8=

· (bPISA8 − bPISA<8=) + �:
(9.10)

In particular, the five linear functions involved in my full models are
shown in Equation 9.11 to Equation 9.15 (Equation 9.11 to Equation 9.13
are Medina’s original Equation 5.2 to Equation 5.4).

?(*Int Arg � F) = �1 − �1

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �1

(9.11)

?(*Int Arg � T) = �2 − �2

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �2

(9.12)

?(*Int Arg � P) =
�3 − �3

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �3

(9.13)

?(*Int Arg � N) = �4 − �4

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �4

(9.14)

?(*Int Arg � M) = �5 − �5

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �5

(9.15)

It is now possible to compute the probability of an implicit object output
for any type of input in terms of a polynomial function computed as
the product of several linear functions whose independent variable
is the verb’s Behavioral PISA score. This result can be obtained by
plugging Equation 9.11 to Equation 9.15 into the computations of the joint
probabilities of *Int Arg dominating each of the other five constraints.
So, for instance, the probability of an implicit object output for a telic,
perfective, non-iterative, manner-specified input (Equation 9.8) can be
computed as in Equation 9.16.
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7: Refer to Equation 9.2 for a definition of
Summed Squared Error.

8: https://github.com/giuliacappelli/
MedinaStochasticOptimalityTheory

9: https://github.com/giuliacappelli/
dissertationData

?(implicit)Tel Perf Non-Iter Spec =

= [ �1 − �1

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �1]·

· [ �2 − �2

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �2]·

· [
�3 − �3

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �3]·

· [ �4 − �4

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �4]·

· [ �5 − �5

bPISA<0G − bPISA<8=
· (bPISA8 − bPISA<8=) + �5] (9.16)

All the variables in such equations are known, with the exception of
�s and �s, which are the values the linear functions take at bPISA<8=

and bPISA<0G , respectively. Based on Medina’s method (see Page 86),
the computational model of the indefinite object construction takes as
input the acceptability judgments (normalized between 0 and 1) and
the Behavioral PISA scores for all the target stimuli, and optimizes the
relevant polynomial functions (such as the one in Equation 9.16) so that:

I �8 and �8 fall between 0 and 1;
I the Summed Squared Error7 between the actual judgments and

the ones predicted by the model are minimized.

In practice, the script creates the model by associating to each input
stimulus sentence the correct equation of the type illustrated in Equation
9.16, according to the aspectual features of the sentence. The probability
of obtaining an implicit object output with that type of input corresponds
to the (normalized) acceptability judgment human participants provided
in the Likert-scale experiment.
Medina (2007, p. 135) made use of Excel Solver to estimate the �s and �s
of the linear functions, while I did so by coding a custom Python script
that makes use of the curve_fitmethod of the optimize function of the
SciPy library (Virtanen et al. 2020). My script, which is fully documented
and commented for the convenience of future researchers, can be perused
and downloaded from my GitHub profile8 . The interested reader can
also download the raw data I used as input in the model from here9 .

9.2.3 Parameters of the linear functions

In this Section, I am going to discuss the probability of *Int Arg outrank-
ing each of the other five constraints at play in my full models of object
drop in English and Italian. As explained in Chapter 4 and in Section
9.2.2, these probabilities stem from the estimation of the �s and �s of the
linear functions in Equation 9.11 to Equation 9.15, whose product yields
a different polynomial function (such as Equation 9.16) for each type of
input among the 16 that are being modeled here (Table 9.7).

https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory
https://github.com/giuliacappelli/dissertationData
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English The parameters of the five linear functions used to estimate
the probability of *Int Arg being ranked above the other five constraints
in English are reported in Table 9.8. The values taken by the �s and �s
show that the re-ranking probability of *Int Arg depends indeed on
the semantic selectivity of verbs (here measured via Behavioral PISA),
albeit in different degrees depending on the constraints. Moreover, it
always shows a directly proportional relation to Behavioral PISA values,
meaning that the re-ranking probability is higher for verbs with a higher
semantic selectivity.

Table 9.8: Values of unknown parameters
�8 and �8 in the full Stochastic Optimal-
ity Theoretic model of the implicit object
construction in English.

� �
p(*Int Arg� Faith Arg) 0.902 1.000
p(*Int Arg� Telic End) 0.490 1.000
p(*Int Arg� Perf Coda) 0.802 0.904
p(*Int Arg� Non-Iter Arg) 0.922 0.999
p(*Int Arg�Mann-Spec Arg) 0.889 1.000

These results are also represented graphically in Figure 9.1, in order to
make their relation to one another more evident. First of all, it emerges
that the effect of semantic selectivity on the re-ranking probability of *Int
Arg is much stronger for Telic End than for the other constraints, since
the curve connecting the corresponding � and � values is steeper than
any other curve in the figure.
Moreover, while all the five curves start from different points (their �),
four of them (all but the curve relative to Perf Coda) have a � of 1, which
is the maximum possible value given the constraints on the function
optimization. This means that for verbs having a Behavioral PISA score
equal to 1, it would be impossible for *Int Arg to be ranked below any of
Faith Arg, Telic End, Non-Iter Arg, or Mann-Spec Arg.

Figure 9.1: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Behavioral
PISA (English full model).
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Another relevant conclusion stemming from Figure 9.1 is that, regardless
of semantic selectivity, *Int Arg is always more likely to rank above
Non-Iter Arg than above Faith Arg, above Faith Arg more than above
Mann-Spec Arg, and above Mann-Spec Arg more than above Perf Coda,
since the curves associated with these rankings never cross. The very
high �s and �s for these functions go to show that, in the model of
English grammar hereby described, *Int Arg is quite likely to rank above
all those constraints. The only exception to this trend is the probability of
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*Int Arg outranking Telic End, which is higher than the probability of
*Int Arg outranking Perf Coda when the Behavioral PISA score of the
input verb is higher than 0.765, lower when the Behavioral PISA score
is lower than 0.765, and exactly the same (88%) if Behavioral PISA is
0.765. This depends on the fact that the curves for the re-ranking of *Int
Arg with respect to Telic End and Perf Coda cross at (0.765, 0.880), i.e.,
when the Behavioral PISA score of the verb in the input is 0.765 and the
re-ranking probability of *Int Arg is 88%.

Italian The � and � parameters of the linear functions used to estimate
the probability of *Int Arg being ranked above the other five constraints
in Italian are in Table 9.9.

� �
p(*Int Arg� Faith Arg) 0.773 0.892
p(*Int Arg� Telic End) 0.802 0.471
p(*Int Arg� Perf Coda) 0.803 0.895
p(*Int Arg� Non-Iter Arg) 0.964 1.000
p(*Int Arg�Mann-Spec Arg) 0.635 1.000

Table 9.9: Values of unknown parameters
�8 and �8 in the full Stochastic Optimal-
ity Theoretic model of the implicit object
construction in Italian.

These results are also shown in Figure 9.2.
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Figure 9.2: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Behavioral
PISA (Italian full model).

These re-ranking probabilities paint a complex picture. As in English
grammar, also in Italian the re-ranking probability of *Int Arg varies
depending on the semantic selectivity of the verb in the input. The �s
are lower than the �s for the functions relative to Faith Arg, Perf Coda,
Non-Iter Arg, and Mann-Spec Arg, meaning that the probability of
*Int Arg outranking these constraints is directly proportional to the
Behavioral PISA score of the input verb. On the contrary, the re-ranking
probability of *Int Arg with respect to Telic End is inversely proportional
to Behavioral PISA, against expectations (refer back to Chapter 5). This
unexpected result can be easily explained by looking at the relation
between judgments and Behavioral PISA in Italian, shown in Figure
9.3 (same visualization as in Figure 8.10, but here the verbs are marked
differently based on their telicity feature). We will remember that Telic
End is only active for telic inputs, while it is vacuously satisfied by
atelic inputs, and that *Int Arg has to outrank all active constraints for
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10: There is also a small interaction be-
tween the function relative to Telic End
and the functions for Perf Coda and Faith
Arg, but I am not describing it into de-
tail given how close it is to the minimum
possible Behavioral PISA score.

a given input in order for an implicit object output to be grammatical
(see Section 9.1.2). Thus, clearly, the model predicts a lower probability of
*Int Arg outranking Telic End for verbs with a higher Behavioral PISA
score because it is fed input data where the least semantically selective
verb (rubare, ’to steal’) is also the most grammatical one without a direct
object, based on human acceptability judgments. Necessarily, all the other
telic verbs have higher Behavioral PISA scores and lower acceptability
judgments, thus determining the inverse re-ranking trend I observed.

Figure 9.3: Correlation between Behav-
ioral PISA and normalized acceptability
judgments on object drop in Italian (high-
lighting telicity).
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Going back to Figure 9.2, it is also possible to observe that the effect of
Behavioral PISA on the re-ranking probability of *Int Arg with respect
to the other constraints is stronger for Telic End (albeit inversely) and
Mann-Spec Arg, less noticeable for Perf Coda and Faith Arg, and almost
irrelevant for Non-Iter Arg. Moreover, the very high � and � values for
the function relative to Non-Iter Arg make it so that (almost) regardless
of semantic selectivity, *Int Arg will be most likely (between 96.4% and
100%) to outrank Non-Iter Arg.
The second constraint which is more likely to be outranked by *Int Arg
is Perf Coda, followed by Faith Arg. The situation is complicated by
relevant interactions between the function relative to Mann-Spec Arg
and those relative to the other four constraints10 . In more detail, it results
that when Behavioral PISA is higher than 0.240, *Int Arg is more likely to
outrank Mann-Spec Arg than Telic End (unlike when Behavioral PISA is
lower), when Behavioral PISA is higher than 0.6 approximately, *Int Arg
is more likely to outrank Mann-Spec Arg than Perf Coda and Faith Arg
(unlike when Behavioral PISA is lower), and finally, when Behavioral
PISA is 1, it is certain (probability of 100%) that *Int Arg will outrank
both Non-Iter Arg and Mann-Spec Arg.

9.2.4 Predicted grammaticality of an implicit object

output

At last, this Section will present the grammaticality of implicit object
outputs in English and in Italian as computed by the full Stochastic
Optimality Theoreticmodel. The grammaticality of object drop is equated
to the predicted probability of an implicit object output (depending on



9.2 A full account of the full models 145

semantic selectiviy and the four binary predictors) as determined via
plugging the �s and �s of the five separate linear functions (reported in
Section 9.2.3) into the 16 polynomial functions of the type exemplified in
Equation 9.16, one for each type of input in the computation (obtained
combinatorily as shown in Table 9.7).

English Figure 9.4 shows how the probability (hence, the grammatical-
ity) of an implicit object output varies depending on semantic selectivity,
measured with Behavioral PISA, for the 16 different types of input in the
model of English grammar.
The grammaticality of object drop is gradient, since it has different prob-
abilities depending on the type of input under consideration, and it is
also shown to vary based on semantic selectivity —if it were not so, the
16 curves in the figure would all be still separate from one another, but
all horizontally flat. Consistently with the values of the �s and �s shown
in Figure 9.1, the probability of an implicit object output in the English
grammar is always in a positive (non-linear) relation with Behavioral
PISA. Moreover, it appears that all kinds of input warrant the possibility
of dropping the direct object at least to some degree, given that no
function in the figure ever reaches zero (the lowest value is around 0.3).
Let us look more closely at the different inputs and their probability
of yielding an implicit object output. Figure 9.4 presents four distinct
bundles of curves, corresponding to atelic imperfective inputs (the black
lines), atelic perfective inputs (the green lines), telic imperfective inputs
(the blue lines), and telic perfective inputs (the red lines). These bundles
are arranged so that the two bundles for atelic inputs move along a
different direction than the one of the two bundles for telic inputs, and so
that atelic imperfective inputs always favor object drop more than atelic
perfective inputs, which favor it more than telic imperfective inputs (with
a caveat I will discuss in a short while), which finally favor it more than
telic perfective inputs. This is consistent with the steep function corre-
sponding to the probability of *Int Arg outranking Telic End depicted
in Figure 9.1, in contrast with the much milder slopes of the functions
associated with Perf Coda and with the other three constraints.
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Within each bundle in Figure 9.4, the four sub-types of inputs are ordered
in the same way. In particular, iterative manner-unspecified inputs (the
dot-dashed lines) are the most likely to drop their direct object in the
output, followed by non-iterative manner-unspecified inputs (the dotted
lines), iterative manner-specified inputs (the full lines), and finally non-
iterative manner-specified inputs (the dashed lines). Once again, this
depends on the different probabilities of *Int Arg outranking the other
constraints discussed in Section 9.2.3, which was (slightly) steeper for
Mann-Spec Arg than for Non-Iter Arg.
It is also possible to uncover here the interaction between the effects of
telicity and perfectivity shown in Figure 9.1 in the shape of the intersection
between the functions relative to the re-ranking of *Int Arg with respect
to Telic End and Perf Coda. Indeed, the bundle of atelic perfective inputs
and the bundle of telic imperfective inputs in Figure 9.4 cross when
Behavioral PISA is about 0.8, so that telic imperfective inputs are more
likely to yield an implicit object output than atelic perfective inputs when
Behavioral PISA is higher than 0.8 approximately.
Finally, it is possible to observe that while the 16 different types of input
all have different probabilities of dropping the direct object in the output
when Behavioral PISA is close to zero, these differences become much
smaller the higher Behavioral PISA gets. Eventually, when Behavioral
PISA is equal to one, all imperfective inputs are sure to drop their direct
object (probability of 100%), while all perfective inputs are about 90%
likely to do so.
The full picture is indeed consistent with the hypothesis, based on the
expected relation between the five predictors and the likelihood of object
drop (see Chapter 3 and Chapter 6). Atelic imperfective iterative manner-
unspecified inputs, having all the aspectual features which the literature
pinpoints as likely to favor object drop, are the most likely to yield an
implicit object output (probability between 90% and 100%, depending on
Behavioral PISA). On the contrary, telic perfective non-iterative manner-
specified inputs, bearing aspectual features that are resistant to object
drop, are the least likely to allow it (probability between 30% and 90%
depending on Behavioral PISA). Nevertheless, while such inputs are the
most resistant to object drop if compared to all the 15 other types, they
still guarantee quite a wide margin for maneuver in an absolute sense,
since object drop is at least 30% probable even at the most unlikely. In
general, semantic selectivity (modeled via Behavioral PISA) appears to
facilitate object drop, in accordance with the re-ranking of the constraints
at play.

Italian Figure 9.5 showshow theprobability (hence, the grammaticality)
of an implicit object output varies depending on semantic selectivity,
measured with Behavioral PISA, for the 16 different types of input in the
model of Italian grammar.
As in English grammar, also in Italian grammar the acceptability of
object drop is shown to be gradient across 16 different types of input,
and to vary according to the input verb’s semantic selectivity (measured
with Behavioral PISA). However, unlike in English, the probability of an
implicit object output is not always in a positive relation with Behavioral
PISA, due to the negative effect of semantic selectivity on the probability
of *Int Arg outranking Telic End shown in Figure 9.2. Despite this
glaring difference between the two grammars, all 16 kinds of input in
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Italian can yield implicit object outputs to varying extents, with their
probabilities ranging from little more than 30% to approximately 90%
depending on Behavioral PISA and the aspectual features of the input
verb. Crucially, it is never the case that an implicit object output candidate
is always ungrammatical for a given input, since no function in this figure
ever reaches zero.
Let us assess these intricate results in more detail. Based on the direction
of the 16 curves defined by the polynomial functions associated with
the corresponding types of input, a pattern emerges that results in four
bundles of curves —one for atelic manner-unspecified inputs (the four
black and green dotted and dot-dashed lines), one for atelic manner-
specified inputs (the four black and green full and dashed lines), one
for telic manner-unspecified inputs (the four red and blue dotted and
dot-dashed lines), and one for telic manner-specified inputs (the four
red and blue full and dashed lines). Ignoring the several intersections
between the functions, which I will tackle later in this Section, the general
trend has the atelic-unspecified bundle yield implicit object outputs more
likely than the atelic-specified bundle, followed by the telic-unspecified
bundle, and finally by the telic-specified bundle. This state of affairs
reflects the results shown in Figure 9.2, where Behavioral PISA is shown
to have a much greater effect on the re-ranking probability of *Int Arg
with respect to Telic End (negatively) and Mann-Spec Arg (positively),
than with respect to the other constraints at play.
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The direction of the curves in Figure 9.5 also stems directly from the
parameters of the five linear functions estimated in Section 9.2.3 and
shown in Figure 9.2. In particular,

I Behavioral PISA has a strong positive effect on the bundle of atelic
manner-specified inputs, since they vacuously satisfy Telic End
(which has a decreasing probability of being outranked by *Int
Arg based on Behavioral PISA) but they violate Mann-Spec Arg
(whose probability of being outranked by *Int Arg has a strong
positive correlation with Behavioral PISA);

I Behavioral PISA has a mild positive effect on the bundle of atelic
manner-unspecified inputs, since they vacuously satisfy both Telic
End and Mann-Spec Arg, only violating constraints whose proba-
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11: Within each bundle, the two curves
associated to imperfective inputs are al-
ways above the two curves associated to
perfective inputs. The effect of iterativity
is only visible within these sub-bundles,
so that the iterative curve is above the
non-iterative curve.

bility of being outranked by *Int Arg is very mildly influenced by
Behavioral PISA;

I Behavioral PISA has a strong negative effect on the bundle of telic
manner-unspecified inputs, since they violate Telic End while
vacuously satisfying Mann-Spec Arg;

I Behavioral PISA has a negligible effect on the bundle of telic
manner-specified inputs, since they violate both Telic End and
Mann-Spec Arg (whose highly negative and highly positive effects,
respectively, get canceled by their interaction).

Within each bundle, the iterative input is always more likely to drop the
object in the output than the non-iterative input, as is the imperfective
input if compared to theperfective input. The stronger effect of perfectivity
than iterativity on the probability of an implicit object output11 is easily
explained, once again, by the greater steepness of the curve associated
with the probability of *Int Arg outranking Perf Coda in Figure 9.2, if
compared to the almost-horizontal curve associated with the probability
of *Int Arg outranking Non-Iter Arg in the same plot.
Something needs to be said about the starting and ending point of the 16
functions in Figure 9.5. The functions associated to the 8 sub-bundles I
just discussed (i.e., the "minimal pairs" of functions varying only in their
iterativity feature) tend to have approximately 5 different values when
Behavioral PISA is zero, which is about 0.8 for atelic imperfective manner-
unspecified inputs, about 0.6 for perfective manner-unspecified (telic and
atelic alike) inputs, about 0.5 for atelic imperfective manner-specified
inputs and telic perfective manner-unspecified inputs, about 0.4 for
atelic perfective manner-specified inputs and telic imperfective manner-
specified inputs, and about 0.3 for telic perfectivemanner-specified inputs.
Due to the effect of Behavioral PISA and to the complex interactions
between the constraints I highlighted before in this Section, the functions
have a much tighter distribution of ending points when Behavioral PISA
ismaximum (i.e., equal to 1). It appears that in this case, atelic imperfective
inputs are about 90% likely to drop their objects in the output, atelic
perfective inputs are about 80% likely, telic imperfective inputs are little
more than 40% likely, and telic perfective inputs are little less than 40%
likely. This shows that for verbs with high Behavioral PISA scores, there
is a major effect of telicity on the probability of them yielding an implicit
object output (with atelic verbs being way more likely than telic verbs to
drop their object), a secondary effect of perfectivity (with imperfective
verbs being more likely than perfective verbs to drop their object), and
no effect of iterativity or manner specification.
Figure 9.5 also shows several relevant intersections between the functions
associated with the 16 inputs, which once again stem directly from the
interactions between the probabilities of *Int Arg outranking each of the
other constraints shown in Figure 9.2. In particular, the atelic manner-
specified bundle crosses the telic manner-unspecified bundle because of
the major interaction between the curves associated with Telic End and
Mann-Spec Arg in Figure 9.2, and the telic imperfective manner-specified
sub-bundle crosses the telic perfective manner-unspecified sub-bundle
because of that major interaction plus the interaction between the curves
associated with Mann-Spec Arg and Perf Coda.
All things considered, the overall picture is consistent with expectations.
Indeed, as in English grammar, in Italian too the atelic imperfective
iterativemanner-unspecified inputs are themost likely to yield an implicit
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object output (between 80% and 90%, more or less), since they bear all
the aspectual features which are known to favor object drop (refer back
to Chapter 3 and Chapter 6). Conversely, telic perfective non-iterative
manner-specified inputs are the most unlikely to result in an implicit
object output (between 30% and almost 40%, approximately), given that
they bear object-drop resistant aspectual features. It is also interesting to
note that these inputs (especially the second one) are the least affected
by Behavioral PISA if compared to the ones belonging to the two other
bundles in Figure 9.5, meaning that the binary predictors play a much
stronger role in determining their likelihood of dropping the direct object
than semantic selectivity.

9.2.5 Model assessment

In this Section, I will comment on the reliability of the full Stochastic Opti-
mality Theoretic models of object drop in English and Italian I presented
in Section 9.2.4, which boils down to measuring the distance between
the actual judgments provided by human participants to the experiment
(designed and conducted as in Chapter 7) and the acceptability values
predicted by the probabilistic model.
I will do so globally, by considering the adjusted R squared values of the
two models (which I already discussed in some detail in Section 9.1.3),
and locally, by computing the individual squared error of each stimulus
in both experiments. I will also compute the Pearson correlations between
the actual and predicted judgments for each type of input, in addition to
the overall Pearson correlation relative to all the sentences in the stimuli
sets. This method follows closely the analysis in Medina (2007, pp. 146–
154), with a relevant difference pertaining to the global assessment of
the model. Instead of computing the (adjusted) R2 of her model, Medina
evaluated the overall performance by means of the Summed Squared
Error between actual and predicted judgments —a choice that, as I will
argue in Section 9.3.1, can lead to unintended conclusions.

English As shown in Table 9.3, the adjusted R2 of the full model of the
implicit object construction in English (modeling semantic selectivity
with Behavioral PISA) is 0.468. This means that the model explains
46.8% of the variance in the data and, thus, that it has a non-negligible
explanatory power. This result, together with the highly significant
Pearson correlation between actual and predicted values shown in Table
9.2 (r = 0.700, p < 0.0001), proves that the full model captures at least
some of the relevant factors determining the grammaticality of object
drop in English.
Let us look more closely at the results. Table 9.10 collects the Pearson
correlations between actual and predicted values relative to the main
input types in themodel, i.e., the stimuli grouped by aspectual features in
isolation, without interactions (presence/absence of telicity, perfectivity,
iterativity, and manner specification). The correlations are all highly
significant (p < 0.0001) and go from 0.412 for atelic inputs to 0.815 for
manner-specified inputs. This observation is critical for the interpretation
of the results, because it shows that the overall picture is quite more
complex than it may seem by only considering general R2 and Pearson
values.
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Table 9.10: Pearson correlations between
actual and predicted judgments in the full
StOTmodel of object drop in Englishmod-
eling semantic selectivity with Behavioral
PISA (main input types).

input type Pearson r

telic 0.487
atelic 0.412
perfective 0.636
imperfective 0.730
iterative 0.654
non-iterative 0.741
manner-specified 0.815
manner-unspecified 0.546

Let us deepen the analysis by considering Table 9.11, which presents
the Pearson correlations between actual and predicted values relative
to all the 16 input types in the model. These results come with a caveat,
namely, that only a small, variable number of stimuli feature within each
input type, given that the experiment has 120 target stimuli divided into
16 different input types (refer back to Chapter 7 for more details on the
experimental design). For this reason, the vast majority of the correlations
in the table turned out to be statistically non-significant.
However, interesting conclusions can be drawn by the statistically signif-
icant results, which are the correlations between actual and predicted
values relative to:

I the 8 telic perfective non-iterative manner-specified inputs;
I the 8 telic imperfective non-iterative manner-specified inputs;
I the 8 telic imperfective iterative manner-specified inputs (which

approach statistical significance without reaching it, at p = 0.072).

The same 8 verbs are involved in these three correlations, i.e., to chop, to
swig, to sign, to slice, to poison, to behead, to knife, to devour. Moreover, they all
are among the least likely inputs to yield an implicit object output, based
on the results depicted in Figure 9.4. This observation is compatible with
the conclusions drawn by Medina (2007, pp. 150–152), where the author
argues that the model is quite apt at detecting the features conditioning
the grammaticality of object drop with telic inputs, while it does not
appear to have the same ability with respect to atelic inputs.

Table 9.11: Pearson correlations between
actual and predicted judgments in the full
StOTmodel of object drop in Englishmod-
eling semantic selectivity with Behavioral
PISA (all 16 input types).

telicity perfectivity iterativity manner r p

telic perfective iterative specified 0.52 ns
telic imperfective iterative specified 0.665 (0.072)
atelic perfective iterative specified 0.015 ns
atelic imperfective iterative specified -0.521 ns
telic perfective non-iterative specified 0.904 0.002
telic imperfective non-iterative specified 0.789 0.02
atelic perfective non-iterative specified -0.455 ns
atelic imperfective non-iterative specified -0.458 ns
telic perfective iterative unspecified 0.289 ns
telic imperfective iterative unspecified 0.297 ns
atelic perfective iterative unspecified 0.454 ns
atelic imperfective iterative unspecified 0.407 ns
telic perfective non-iterative unspecified 0.204 ns
telic imperfective non-iterative unspecified -0.03 ns
atelic perfective non-iterative unspecified 0.213 ns
atelic imperfective non-iterative unspecified 0.317 ns

However, Medina’s conclusion about the model being better at handling
telic inputs than atelic ones does not live up to a closer analysis of the
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12: https://github.com/giuliacappelli/
dissertationData

13: The absolute value, or modulus, of a
real number is its distance from 0, i.e., its
numerical value regardless of its sign.

results, this time looking at the squared error for each sentence in the
stimuli set. The full list of results is available in Appendix F and, in
CSV format, in a repository12 on my GitHub profile. Incidentally, one
could also wonder as to why this analysis (following Medina) takes into
consideration squared errors instead of themore straightforward absolute
value13 of the difference between actual and predicted judgments. The
reason is that G2 < |G | for G ∈ (−1, 1) while G2 > |G | when |G | > 1 (as
depicted in Figure 9.6), so that, compared to absolute error, squared error
is more lenient towards small errors and more penalizing towards large
errors.

G

H

(1,1)(-1,1)

H = G2

H = |G |

Figure 9.6: Relation between squared er-
ror and absolute error, visualized as the
intersection between H = G2 and H = |G |,
respectively.

With that said, the analysis of the squared errors yielded by the full,
Behavioral PISA-based model of object drop in English contradicts
Medina’s conclusions about atelic verbs being clumsily handled by the
model. Indeed, the 13 best-performing stimuli (whose squared error is
even zero) all feature atelic verbs, while they vary with respect to their
other aspectual features and Behavioral PISA scores. These are collected
in Table 9.12.

verb tel perf iter spec bPISA actual model sq. error

drink - - + - 0.608 0.977 0.961 0
polish - - + + 0.267 0.83 0.852 0
polish - - - + 0.267 0.795 0.803 0
polish - + - + 0.267 0.66 0.666 0
sew - - + - 0.404 0.952 0.941 0
sew - + - - 0.404 0.761 0.756 0
sing - - + - 1 0.993 1 0
sing - - - - 1 1 0.999 0
sing - + - - 1 0.91 0.903 0
smoke - - + - 0.736 0.992 0.974 0
teach - + + - 0.607 0.839 0.831 0
wash - - + + 0.475 0.882 0.893 0
wash - - - + 0.475 0.859 0.856 0

Table 9.12: The 13 best-performing stimuli
in the full model of object drop in English
(modeling semantic selectivity with Be-
havioral PISA).

Let us now consider the 5 worst-performing stimuli based on their
squared errors, collected in Table 9.13. These results can be easily ex-
plained by considering the Behavioral PISA scores of the input verbs in
the five stimuli.

The verb to cut has a (normalized between 0 and 1) Behavioral PISA
score of 0.356, which would call for a similar normalized acceptability
judgments at about one-third of the 0-1 scale. However, the participants
to the experiment provided an average rating of 0.286, which is substan-
tially lower than expected based on Behavioral PISA alone. The model,

https://github.com/giuliacappelli/dissertationData
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Table 9.13: Squared errors of the 5 worst-
performing stimuli in the full model of
object drop in English (modeling semantic
selectivity with Behavioral PISA).

verb tel perf iter spec bPISA actual model sq. error

cut - + - - 0.356 0.286 0.745 0.211
steal + + - - 0 0.83 0.327 0.253
steal + - + - 0 0.962 0.442 0.27
steal + - - - 0 0.927 0.407 0.27
steal + + + - 0 0.945 0.355 0.348

14: Please refer to Appendix C.3 for the
raw Behavioral PISA scores and to Figure
8.3 for a graphical representation of the
normalized scores.

15: Refer back to Page 96 for the de-
tailed description of how I avoided idiom-
dependent artifacts in my Computational
and Behavioral PISA calculations.

presented with an atelic, iterative input with a not-too-low Behavioral
PISA score, which are all features of a good candidate for object drop,
predictably assigns to such an input a sensible, theory-abiding rating of
0.745 (i.e., a 74.5% probability of yielding an implicit object output).
On the contrary, all the target stimuli with the verb to steal get a much
lower predicted rating than the actual rating provided by human subjects.
This happens, once again, because of the clash between Behavioral PISA
(and telicity) and the judgments obtained in the experiment with native
speakers. The verb to steal is telic (a feature that usually goes hand-in-hand
with object drop) and it has the lowest Behavioral PISA score among
the 30 target verbs14 , therefore the model is quite keen on predicting
a low probability of object drop for such an input. However, despite
the minimum Behavioral PISA score, human subjects provided very
high acceptability ratings for all the stimuli featuring this telic, manner-
unspecified verb (ranging from 0.830 for the perfective non-iterative
stimulus to 0.962 for the imperfective iterative stimulus, consistently
with what I noted so far about the role of the binary predictors). This
unexpected clash between Behavioral PISA and human judgments is
easily explained. As real-world knowledge suggests, it is indeed possible
to steal a wide array of items from their legitimate possessor, as well
as someone’s breath, or heart, or thunder, or equally essential things in
common-use idioms15 . The broad spectrum of stealable items, i.e., the
low semantic density of the direct objects of the verb to steal, determines
the low Behavioral PISA score of this verb. On the other hand, native
speakers of English found it quite acceptable to use the verb intransi-
tively even in the most object-drop resistant context (i.e., the perfective
non-iterative stimulus Diana had stolen.), since when processing such
utterances they are typically more focused on the anti-social behavior
shown by the Agent than on the concrete reality of the object the Agent
stole (refer to Goldberg (2005a, pp. 21–28) for a similar effect of world
knowledge facilitating object drop with some so-called "taboo" verbs).

Italian As argumented in Section 9.1.3, the full Stochastic Optimality
Theoretic model of object drop in Italian, making use of Behavioral PISA
to quantify semantic selectivity, achieves a satisfactory level of reliability
in its results. In particular, it explains 45.5% of the variance in the data
(based on the adjusted R2 computed in Table 9.5), and there is a highly
significant, large correlation between actual and predicted acceptability
ratings (Pearson r = 0.692, p value < 0.0001, as shown in Table 9.4).
A very high and significant correlation with comparable Pearson rs and
the same p value is also found between actual and predicted judgments
when dividing the full set of stimuli into subgroups based on the main
input types, as in Table 9.14. Among these 8 input types, only atelic and
manner-unspecified inputs yield predicted ratings that vary remarkably
from those elicited from human subjects (Pearson rs are respectively 0.374
and 0.470, statistically significant in both cases). The overall results show
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16: https://github.com/giuliacappelli/
dissertationData

that, despite these two inconsistencies, so far the general picture stays
true to the one depicted by the adjusted R2 and total Pearson correlation
without a great deal of nuance.

input type Pearson r p value

telic 0.640 0.000
atelic 0.374 0.001
perfective 0.631 0.000
imperfective 0.730 0.000
iterative 0.692 0.000
non-iterative 0.694 0.000
manner-specified 0.749 0.000
manner-unspecified 0.470 0.000

Table 9.14: Pearson correlations between
actual and predicted judgments in the full
StOT model of object drop in Italian mod-
eling semantic selectivity with Behavioral
PISA (main input types).

Is this also valid when considering all the 16 input types herebymodeled?
Let us look at the Pearson correlations in Table 9.15. Once again, as noted
about the English stimuli, large p values are to be expected in such a
computation, given that the 16 slots for the input types are populated by
a meager 120-sentence total. However, while in English the correlation
turned out to be statistically significant for two types of input (and
approaching significance for a third type), this is not the case in Italian. I
interpret these results to mean that the overall picture made up by the
Italian data is more nuanced that the English one, where at least some
clear-cut distinctions between the aspectual types emerge.

telicity perfectivity iterativity manner r p

telic perfective iterative specified 0.329 ns
telic imperfective iterative specified 0.630 ns
atelic perfective iterative specified 0.466 ns
atelic imperfective iterative specified 0.022 ns
telic perfective non-iterative specified 0.558 ns
telic imperfective non-iterative specified 0.478 ns
atelic perfective non-iterative specified 0.099 ns
atelic imperfective non-iterative specified 0.282 ns
telic perfective iterative unspecified 0.486 ns
telic imperfective iterative unspecified 0.751 ns
atelic perfective iterative unspecified 0.429 ns
atelic imperfective iterative unspecified 0.436 ns
telic perfective non-iterative unspecified 0.552 ns
telic imperfective non-iterative unspecified 0.775 ns
atelic perfective non-iterative unspecified 0.419 ns
atelic imperfective non-iterative unspecified 0.404 ns

Table 9.15: Pearson correlations between
actual and predicted judgments in the full
StOT model of object drop in Italian mod-
eling semantic selectivity with Behavioral
PISA (all 16 input types).

Finally, a more in-depth analysis of the results concerns the squared
error of each stimulus in the experiment about object drop in Italian
(reported in full here in Appendix F and online16 on my GitHub profile.
Comparably with English, there are 12 stimuli in the full set of 120
stimuli whose squared error is null (which equates to perfect model
performance), but, unlike in English, they do not belong to any input
aspectual type in particular as a group. These 12 best-performing stimuli
are collected in Table 9.16.

Let us now consider the five worst-performing stimuli, collected in Table
9.17. Once again, the inconsistent model predictions are fully explained
by the interaction between the binary aspectual features, Behavioral PISA,
and the actual judgments provided by human participants.

https://github.com/giuliacappelli/dissertationData
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Table 9.16: The 12 best-performing stimuli
in the full model of object drop in Italian
(modeling semantic selectivity with Be-
havioral PISA).

verb tel perf iter spec bPISA actual model sq. error

accoltellare + - + + 0.321 0.445 0.424 0
accoltellare + + - + 0.321 0.337 0.345 0
accoltellare + + + + 0.321 0.358 0.353 0
cantare - + + - 0.985 0.785 0.795 0
insegnare - - + - 0.583 0.827 0.842 0
lavare - - + + 0.478 0.661 0.672 0
lavare - + + + 0.478 0.575 0.569 0
rompere + + - - 0.597 0.419 0.431 0
scrivere - - - - 0.901 0.895 0.877 0
spaccare + - - + 0.166 0.378 0.399 0
trangugiare + - + + 0.387 0.438 0.428 0
trangugiare + + + + 0.387 0.349 0.359 0

Table 9.17: Squared errors of the 5 worst-
performing stimuli in the full model of
object drop in Italian (modeling semantic
selectivity with Behavioral PISA).

verb tel perf iter spec bPISA actual model sq. error

firmare + + - + 0.564 0.789 0.365 0.179
versare - - + - 0.780 0.432 0.866 0.188
versare - - - - 0.780 0.299 0.859 0.313
versare - + + - 0.780 0.183 0.757 0.330
versare - + - - 0.780 0.165 0.751 0.343

The model assigns to the perfective, non-iterative stimulus featuring the
telic, manner-specified verb firmare ’to sign’ a low probability of licensing
object drop (36.5%), since it has an intermediate Behavioral PISA score
(0.564 on a 0-1 scale) and it also presents four out of four binary features
that penalize object drop (more on this in Chapter 3 and Chapter 6).
However, there is considerable distance between the rating predicted by
the model and the one provided by native speakers of Italian, according
to whom this verb is 78.9% likely to drop its object in the sentence Sara
aveva firmato ’Sara had signed’. This situation is quite similar to the one
I discussed on Page 152 with respect to the poor performance of the
model relative to the target stimuli with the verb to steal, due to very high
human ratings against very low model predictions. In that case, as well
as in the case of the stimulus with firmare ’to sign’ in Table 9.17, it would
be possible to ascribe the rating mismatch to the fact that, regardless of
semantic selectivity and aspectual features, people are quite likely to
accept implicit objects in sentences assumed to be maximally resistant
to object drop if they feel a culture-induced pressure to focus on the
action itself performed by the Agent instead of on the Theme or Patient
involved in the event. The sociolinguistic pressure has the native speaker
of English accept object-less stimuli with to steal because the act itself of
stealing is repulsive in our property-dominated culture. In the case of the
verb to sign, Italian speakers are probably prone to find it quite acceptable
when used intransitively because of Agent affectedness (discussed in
Section 2.4.2 and in Section 3.1.2), since documents are usually signed to
obtain something in return. An alternative explanation of the unexpected
grammaticality of indefinite object drop with Italian firmare ’to sign’
may be found in the low affecteness of its object (a low-transitivity trait
among the ones defined by Hopper and Thompson (1980), as discussed
in Section 2.1). However, this analysis seems to be less ideal when used
to account for the unexpected grammaticality of intransitive to steal in
English. Thus, it may be best to explain both these ratings by broadly
resorting to a communication need to focus on the activity itself rather
than on its results (an intransitivization mechanism described in more
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17: Refer back to Section 9.2.2 for the full
account of this computation.

detail on Page 23).
The other stimuli where the full model of the implicit object construction
in Italian fails to predict judgments close to the human-elicited ones all
feature the verb versare ’to pour’. In this case, a verb that would be the
perfect candidate for object drop (due to its very high Behavioral PISA
score, atelicity, and lack ofmanner specification) gets predictably assigned
high probabilities of dropping the direct object by the model, but it is
judged as variably unlikely to favor object drop by human participants.
In particular, they found it extremely unlikely in both perfective stimuli,
quite unlikely with the imperfective non-iterative stimulus, and almost
halfway likely with the imperfective iterative stimulus (all according
to the literature on the matter). The very same behavior of the verb to
pour (in English) is found in Medina (2007, p. 148), who ascribes the
mismatch between human judgments and model predictions to the very
high semantic selectivity score of the verb (the highest in her 30-verb
set), which "forces the model to assign a very high grammaticality to the
implicit object output". This explanation can also be used to account for
the judgments-predictions mismatch for the Italian stimuli featuring the
verb versare ’to pour’. Another explanation, not contradicting the previous
one, is possible considering that while the computation of Behavioral
PISA is based on a single sense of the verb (refer back to Section 6.1.3 for
the details), i.e., the literal sense relative to liquid pouring, the verb versare
in Italian is also used to refer to the act of depositing liquid assets (such
as one’s paycheck) in a bank account. Thus, the verb gets assigned a high
Behavioral PISA score because all versare-able objects in the computation
are actual liquids one can pour, but native speakers participating in the
Likert-scale experiment may well have been thinking of the other sense
of the verb when providing their judgments, given that the sentences
were presented on the screen one by one without additional intra- or
extra-linguistic context (refer back to Chapter 7). For instance, when
presented with the object-less stimulus sentence Marta stava versando (lit.
Marta was pouring), they may have imagined a scenario where Marta
was depositing her paycheck in her bank account, rather than pouring
something from a pitcher.

9.2.6 Comparing the English and Italian models

Parameters of the linear functions and predicted grammaticality Sev-
eral similarities, as well as some crucial differences, between the English
and the Italian grammars with respect to their tolerance for the implicit
object construction jumped to the eye throughout the analysis of both full
Stochastic Optimality Theoretic models in this Chapter. Let us compare
them in all relevant respects step by step.
The first glaring difference between the grammars of English and Italian
emerges by comparing the parameters of the linear functions used to
estimate the probability of *Int Arg outranking the other five constraints
at play17 , as collected in Table 9.8 and Table 9.9 (and graphically rep-
resented in Figure 9.1 and Figure 9.2). Based on these parameters, it
appears that the role of the five predictors of object drop is not the same
in the two grammars, given that:

I in English *Int Arg is more likely to outrank Faith Arg than Perf
Coda, while in Italian the opposite holds;
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I the function describing the probability of *Int Arg outranking
Mann-Spec Arg as a function of semantic selectivity ismuch steeper
in Italian than in English, and in Italian it interacts noticeably with
all the other functions;

I in English the probability of *Int Arg outranking Telic End is
a positive function of semantic selectivity, just like all the other
functions taken into consideration here, while in Italian it actually
decreaseswith the increase of Behavioral PISA.

Two aspects of the English and Italian grammars are instead the same in
both, i.e., the re-ranking probability of *Int Arg is indeed a function of
semantic selectivity (here computed via Behavioral PISA), and *Int Arg
is always most likely to outrank Non-Iter Arg (with a negligible effect of
semantic selectivity).
As observed in Section 9.2.4, these differences in the re-rankings of *Int
Arg yield predictable differences in the predicted grammaticality of an
implicit object output for the 16 input types in the two languages, as
depicted in Figure 9.4 for English and Figure 9.5 for Italian. In particular,
a comparison between the two figures shows that:

I the 16 curves can be divided into four main bundles in both
languages, but these are defined by telicity and perfectivity in
English, by telicity and manner specification in Italian;

I the values of the 16 functions in English always increase when
Behavioral PISA increases, while in Italian they decrease for telic,
manner-unspecified inputs (regardless of their perfectivity and
iterativity);

I while the probabilities of licensing an implicit object output are
more or less the same in English and in Italian for verbs with a
low Behavioral PISA score, they are much higher in English than
in Italian for verbs with a high Behavioral PISA score (or, more
accurately, the high probabilities shown by all English verbs are
only reached by atelic verbs in Italian);

I imperfective inputs in English always drop their object for maxi-
mally semantically selective verbs (i.e., Behavioral PISA = 1), while
no Italian input ever has a 100% probability of yielding an implicit
object output.

However, several commonalities between the two languages still emerge:

I the object-drop probability range is comparable in both languages
(30-100% in English, 30-90% in Italian);

I the effect of Behavioral PISA is different in the two languages, but
it is still relevant nevertheless;

I the four binary predictors act according to expectations in both
languages, i.e., atelic verbs are more likely than telic verbs to drop
their object, imperfective verbs more than perfective verbs, iterative
verbs more than non-iterative verbs, and manner-unspecified verbs
more than manner-specified verbs.

Evaluation of the models’ performance Despite the different way
English and Italian re-rank *Int Arg with respect to the other constraints
and the different probabilities of dropping the object they assign to the
16 input types under examinations, the performances of the two full
Stochastic Optimality Theoretic models are strikingly similar (as just
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discussed in Section 9.2.5). In general, they are almost equally able to
model the grammaticality of implicit object outputs based on the five
predictors, given that the model for English has an adjusted R2 equal
to 0.468 and a 0.700 Pearson r (p < 0.0001) for the correlation between
actual and predicted acceptability ratings, while the model for Italian
has a 0.455 adjusted R2 and a 0.692 Pearson r (p < 0.0001).
Moreover, the close similarity between the two grammars still holds
when performing a much finer-grained comparison, namely, considering
the squared error of the ratings the model predicted for each stimulus.
The stimuli having a null squared error (up to three decimal places) are
13 in English and 12 in Italian, out of 120 stimuli. On the opposite side
of the spectrum, the five worst-performing stimuli prediction-wise in
English (see Table 9.13) and in Italian (see Table 9.17) feature different
verbs in the two languages, but they have comparable squared errors. In
particular, the squared errors for the five English stimuli range between
0.211 and 0.348, while for Italian they range between 0.179 and 0.343.
Based on these observations and other conclusions drawn in this Chapter
and in Chapter 8, it would finally be worth mentioning that the model of
the grammaticality of object drop in English is consistently better than
the Italian model, albeit slightly. The reason for this small discrepance
cannot be found in noisy corpus data, since Behavioral PISA is not a
corpus-based semantic selectivity measure like Computational PISA, nor
in the experimental design, since it is the same in both cases. I would
attribute it to a more clear-cut effect of the predictors in English than
in Italian, as argued in this Chapter, and also to semantic differences
between the English target verbs and their Italian translations. Indeed,
despite putting all the care possible in minimizing polysemy effects and
in finding the most appropriate translation to build comparable verb
sets (refer back to Page 106), some differences due to language-internal
idiosyncracies still emerge. For instance, English to smoke and Italian
fumare both typically refer to the act of inhaling the byproduct of tobacco
combustion, but the former can also refer to a technique used to cure
meat and fish (which would correspond to Italian affumicare). To give
another example, English to break and Italian rompere both refer to the
act of destroying the physical integrity of something, but they also
participate in a variety of language-specific idioms (e.g., break a leg! in
English and rompere le palle in Italian, lit. ’to break the balls’, which is
often used intransitively to convey the same pragmatic intention in a less
colorful fashion). As is to be expected, the intuitions of native speakers
pertaining to the grammaticality of the implicit object construction are
influenced by the "semantic cluster" of meanings each verb activates in
their minds, which thus lead to somewhat different judgments in English
and Italian. This interpretation is consistent with Fillmore (1969, p. 100),
who argued that "with polysemous transitive verbs, in other words verbs
with several different senses, it is rather certain types of the senses and
not the predicates per se that permit leaving out the object".
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18: The SummedSquaredError of amodel
increases by increasing the number of
datapoints to predict, similarly to how
non-adjusted R squared increases when
increasing the number of predictors in
the model. Therefore, such measures are
heavily influenced by factors external to
the quality itself of the model. Moreover,
a model can have higher SSE than an-
other even if its adjusted R squared is
lower —e.g., my full Behavioral PISA-
based model of English has an adjusted R
squared equal to 0.468 and a SSE of 4.966,
but the same model for Italian yields a
0.455 adjusted R squared and a 4.516 SSE.

9.3 Final remarks

9.3.1 Reproducing Medina

In Section 9.2 I provided a full account of the inner workings and results
yielded by the full Stochastic Optimality Theoretic models of object drop
in English and in Italian. I motivated the choice to delve into the details of
these two models, instead of any of the 16 other ones (collected in Table
9.1 and explained in Section 9.1.1), by making reference to the overall
performance of the 18 models (see Section 9.1.3). However, a question
was left unanswered. Since the models hereby discussed were prompted
by the original study by Medina (2007), it would indeed be interesting to
compare her results with the ones I obtained in the comparable models
among my 18 ones, namely, the basic 3-predictor models. In this Section
I will first compare Medina’s model to my basic model quantifying
semantic selectivity with Resnik’s SPS, since it is the same measure of
semantic selectivity Medina employed, and then I will comment on the
two PISA-based models.
As I observed in Section 9.1.3, it is impossible, unfortunately, to provide
a thorough, statistically-motivated comparison of my models against
Medina’s model, because she chose to evaluate her model’s performance
by means of the Summed Squared Error18 of the predicted ratings she
obtained in the model, instead of relying on more robust measures such
as the (adjusted) R2. Thus, I can only compare the parameters of the
three linear functions and probabilities of an implicit object output for
each aspectual type by Medina (2007, pp. 143–144) with the same kind of
results I obtained with my own basic model(s).
Medina’s original results, which I reproduced graphically and discussed
in Section 5.5.5 (� and � parameters in Figure 5.5, probability of object
drop in Figure 5.6), are reported again here in Figure 9.7 Figure 9.8.

Figure 9.7: Graphical representation of
the values of � and � in Medina’s model
(reproduction of Figure 5.5).
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The same results I obtained in my basic model with semantic selectivity
computed via Resnik’s SPS are reported here in Figure 9.9 and Figure
9.10.

As is made evident by comparing Figure 9.7 and Figure 9.9, my SPS-based
basic model fails to reproduce Medina’s findings. In Medina’s model
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atel imperf Figure 9.8: Representation of the relation-
ship between semantic selectivity and the
probability of an implicit object output in
Medina’s model, based on computed �
and � values (reproduction of Figure 5.6).
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Figure 9.9: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Behavioral
PISA (English full model).

there is a prominent interaction between the probability of *Int Arg
outranking Telic End and the probability of it outranking the two other
constraints at play (i.e., Faith Arg and Perf Coda), while this interaction
is absent from my SPS-based model. In particular, the relative re-ranking
probabilities are ordered the same way in both models when Resnik’s
SPS (raw in Medina’s plot, normalized in mine) is very low, i.e., *Int
Arg is most likely to outrank Faith Arg, then Perf Coda, then Telic End.
However, while in my model this relation also holds for high values of
SPS, in Medina’s model *Int Arg becomes more likely to outrank Telic
End than other constraints for mid-to-high values of SPS.
This state of affairs is reflected in the probability of licensing an implicit
object output for each separate aspectual type, reported here in Figure
9.9 for Medina’s model and in Figure 9.10 for my SPS-based basic model.
Indeed, while in both models the object-dropping probabilities for the
four aspectual inputs are ordered the same way for low-SPS verbs (atelic
imperfective� atelic perfective� telic imperfective� telic perfective),
in Medina’s model telic imperfective inputs are actually more likely to
drop their object than atelic perfective inputs for mid-to-high-SPS verbs.
In my model these probabilities vary according to SPS, but they never
interact with one another.
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Figure 9.10: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Behavioral PISA (English full
model).
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However, it is interesting to note that I reproduced Medina’s findings
in my basic model using Computational PISA and, a bit worse, in my
basic model using Behavioral PISA. I will not report here the four figures
to avoid cluttering these pages, but the interested reader can compare
Medina’s figures with my own ones relative to the Computational PISA
model (Figure E.3 and Figure E.4) and to the Behavioral PISA model
(Figure E.5 and Figure E.6), collected in Appendix E. Since Medina
considered a different set of verb than I did, and recruited 15 different
participants than the 30 ones who participated in my experiment, it is
possible to conclude that the grammar of English with respect to object
drop defined by Medina is indeed true to the way native speakers of
English re-rank the constraints to judge the grammaticality of object
drop in their language. Crucially, Medina’s results are not an artifact
of the specific verbs she picked (the same as in Resnik (1993, 1996), for
evident computational reasons). Why are her findings reproduced quite
closely by my PISA-based basic models but not by my SPS-based basic
model, which after all uses the very same measure of semantic selectivity
Medina used? I would motivate these results by making reference to the
shortcomings of Resnik’s SPS, which I discussed extensively in Section
6.1, and in particular to its need for both a taxonomy (such as WordNet)
and for a corpus (to extract the frequencies needed in the computation,
as in Section 6.1.1). It is thus unsurprising that a model making use of a
taxonomy-based measure yields results of fleeting reproducibility, even
more so considering that the corpus upon which Resnik and Medina
based their calculations (the Brown corpus) is much smaller than the one
I employed to obtain Computational PISA scores (the ukWaC corpus).

9.3.2 On regression models

I would finally like to echoMedina’s (2007) concerns about the possibility
of using a statistical regression model as a linguistically-informed model
of language. In her thesis (Medina 2007, pp. 132–133), she concluded
that her Stochastic Optimality Theoretic model shares the property of
additivity with linear regression models, since the former models the
probability of an implicit object output as the sum of the probabilities
of the relevant constraint re-rankings, while the latter models it as the
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19: That is to say, grammars selecting the
most harmonic output among the candi-
dates generated on the basis of the input,
where "harmony" is the satisfaction of a set
of weighted constraints. Refer to Chapter
4 for more details.

20: Which, I will remember, is simply a
linear regression model taking both fixed
and random effects into account.

sum of weighted variables. The main difference between the two kinds
of model lies in the fact that the linguistic model keeps the input, the
constraints, and the constraint re-rankings explicit, while in a regression
model they are collapsed into weighted variables. In general, Pater, Potts,
and Bhatt (2006) observe that harmonic grammars19 translate into linear
systems of equations and, thus, are solvable as such.
I second Medina’s conclusions, based on the results I obtained in my
own study (refer back to Chapter 8 for the linear regressions and to the
current Chapter for the linguistic models). In particular, I am going to
compare the linear mixed-effects model20 in Table 8.3 for English and in
Table 8.6 for Italian with the results of my full linguistic model of object
drop in Figure 9.4 for English and in Figure 9.5 for Italian. The mixed
models clearly capture the main aspects of the linguistic models, e.g.,
the prominent role of telicity and perfectivity in jointly determining the
grammaticality of the implicit object construction and the statistically
less relevant effect of manner specification and iterativity. The role of
Behavioral PISA determines another major divide between the two kinds
of model, since in the regression it is assigned a weight just like any other
predictor, be it continuous or binary, while in the Stochastic Optimality
Theoretic model it is used as the independent variable in the computation
of separate re-ranking functions for each constraint at play.
It is worth noting that Medina’s model makes explicit use of a tenet
of regression models, i.e., the requirement for the model to minimize
the Summed Squared Error, which the reader can find in Medina’s
formulation on Page 86 (and again in Section 9.2.2) and in a more math-
ematically intense fashion in Bates et al. (2015, p. 13) with regards to
linear mixed-effects models. In a sense, a theoretical and computational
method bridging the gap between linear regressions, which are linguisti-
cally naive, and Medina’s model, which is not thoroughly defined as a
linguistically-informed regression model, is Linear Optimality Theory
(Keller 2000, 2006), a stochastic variant of Optimality Theory which
represents the constraint rankings as numerical weights and has the
grammaticality of any linguistic structure be proportional to the sum
of the weights of the constraints it violates. While both Keller’s Linear
Optimality Theory and Medina’s variant of Stochastic Optimality Theory
rely on the Least Square Estimation algorithm to estimate parameters, the
two models differ significantly in their implementation because Linear
Optimality Theory defines grammaticality in terms of the relative har-
mony of two candidates in the same candidate set, while Medina’s model
evaluates the grammaticality of null-object candidates across candidate
sets (for reasons explained in Section 4.1.4).
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1: As discussed in Section 9.1.1, the four-
predictor models include Medina’s three
predictors and iterativity, while manner
specification is only added in the full five-
predictor models.

2: Required to have grammatical implicit
indefinite objects with telic verbs, as ex-
plained in Chapter 5 and Chapter 9.
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10.1 Final comments

10.1.1 Recap of main findings

I presented my models of the implicit indefinite object construction in
English and in Italian in Chapter 9, together with a discussion of their
performance and results. Here I will provide a short summary of the
main findings of the two full models, namely, the five-predictor models I
computed using Behavioral PISA (introduced in Section 6.1.3) to quantify
semantic selectivity, as explained in Section 9.1.1.
In general, the models perform comparably well, explaining almost half
of the variance in the data (adjusted R2 is 0.468 for the English model
and 0.455 for the Italian model, as reported in Section 9.1.3). As I argued
in Chapter 9, the better performance of the English model with respect
to the Italian model may depend on semantic differences between the
target verbs included in the behavioral experiments, and also on a more
clear-cut role the predictors play in English than in Italian. These results,
especially in the light of the fact that the full models improve on the
performance of the reduced models (namely, Medina’s three-predictor
model and my own four-predictor model not considering manner speci-
fication1 ), are indeed encouraging. However, even the full models fall
short of explaining all the variance in the data, demonstrating that there
is still room for improvement. In Section 10.2, I will propose some ideas
to expand upon these models and improve their computation in future
research.
Let us look more closely at the constraint re-rankings and subsequent
grammaticality predictions of object drop in the two models. Both in
English and in Italian, the probability of *Int Arg outranking Telic
End2 varies strongly depending on Behavioral PISA, so that the curves
described by the functions associated to this probability in the two lan-
guages are the steepest among all the curves associated to the re-ranking
probabilities (as shown in Section 9.2.3). However, while in English the
probability of *Int Arg outranking Telic End is directly proportional to
semantic selectivity, in Italian the relation is one of inverse proportionality,
for reasons discussed while commenting Figure 9.3.
Moreover, while in both languages the probability of *Int Arg outrank-
ing Telic End varies greatly depending on Behavioral PISA, there are
differences with respect to the other predictors in the two languages.
In particular, in English there is an interaction between the functions
associated with the re-ranking probabilities of Telic End and Perf Coda,
because telic imperfective verbs are more likely to drop their object than
atelic perfective verbs for high Behavioral PISA values, while the opposite
holds for Behavioral PISA scores lower than 0.8, approximately. In Italian,
instead, there is an interaction between the function associated to the
re-ranking probability of Mann-Spec Arg and the functions associated
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3: The interaction with Non-Iter Arg is
trivial, because it happens when Behav-
ioral PISA is 1, i.e., the maximum value.

to the re-ranking probabilities of all the other constraints3 . Thus, both
models show a main effect of telicity on the probability that the object-
less use of a transitive verb is considered grammatical, but the second
most relevant factor in the model is perfectivity in English and manner
specification in Italian.
In addition to the adjusted R2 values and the main role played by telicity,
the two models are also comparable for:

I the range of predicted object-dropping probabilities (30-100% in
English, 30-90% in Italian);

I the relevance of semantic selectivity in determining the grammati-
cality of object drop (with re-ranking probabilities that are always
directly proportional to Behavioral PISA, with the exception of
Telic End in Italian);

I the fact that the predictors perform consistently with theoretical
literature on object drop (refer to Chapter 2, Chapter 3, and Chapter
6).

Indeed, in both models atelic imperfective iterative manner-specified
verbs are the most likely to drop their object (between 80% and 90%),
while telic perfective non-iterative manner-unspecified verbs are the
least likely (between 30% and 40%). Moreover, atelic verbs are more
likely to occur with implicit objects than telic verbs, imperfective verbs
more than perfective verbs, iterative verbs more than non-iterative verbs,
and manner-unspecified verbs more than manner-specified verbs, as
expected.
Even though semantic selectivity plays an active role in both models,
the range of predicted grammaticality across different input types is not
the same in English and in Italian. Indeed, while it is comparable for
low-Behavioral PISA verbs in the two languages (ranging from 30% to
80% in English and from 30% to 90% in Italian), it is much narrower and
higher in English (between 90% and 100%) than in Italian (between 40%
and 90%), as shown and discussed in Section 9.2.4.

10.1.2 Comments on iterativity and manner specification

In this dissertation, I modeled the implicit indefinite object construction
following Medina’s (2007) steps. A major element of novelty I added is
the inclusion of two novel constraints in themodel, i.e., Non-Iter Arg and
Mann-Spec Arg (refer to Chapter 9), which are based on the role played
by iterativity and manner specification (refer to Chapter 3), respectively,
in facilitating indefinite object drop.
As I argued in Section 9.1.3, the addition of these two new constraints
proved to be beneficial to the performance of the model when applied
both to English and to Italian data. Indeed, the full five-predictor models
explain the variance in the data better than the three- and the four-
predictor models regardless of the chosenmeasure of semantic selectivity
(Resnik’s SPS, Computational PISA, or Behavioral PISA). However, the
four-predictor models (including iterativity in addition to Medina’s
telicity, perfectivity, and semantic selectivity) do not perform better than
the three-predictor models, with basically identical adjusted R2 values in
English and slightly smaller adjusted R2 values in Italian. Taken together,
these results mean that iterativity alone is not a sufficient addition to
Medina’s model (rather, it makes the model needlessly more complicated,
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since it does not explain more variance in the data), but models including
iterativity and manner specification together have a stronger explanatory
power.
The lower performance of the models including iterativity without
manner specification echoes observations drawn in Section 9.2.3 relative
to the probability of *Int Arg outranking Non-Iter Arg, that was shown
to be very high both in a relative sense (since it is the highest among all
the re-ranking probabilities) and in an absolute sense (92-100% in English,
96-100% in Italian). Since Non-Iter Arg is vacuously satisfied by iterative
inputs, and varies almost imperceptibly according to semantic selectivity
with non-iterative inputs (for which it is an active constraint), it stands to
reason that it has no noticeable effect on the predicted grammaticality of
object drop.
The same analysis would also explain the significant effect of the full
models,wheremanner specification is also includedamong thepredictors.
In particular, in Section 9.1.3 I showed that the addition of manner
specification determines a much stronger qualitative leap in the full
models of Italian than in English, where the increase in the performance
of the models is rather modest. Once again, these results are related to
the probability of *Int Arg outranking the relevant constraint, i.e., Mann-
Spec Arg. As shown in Section 9.2.3, the curve described by the function
associated to this re-ranking probability is quite steep in Italian and it
intersects all the other curves, while in English it is not steep at all and it
has no interactions with the other curves. Thus, manner specification in
Italian interacts in meaningful ways with semantic selectivity (as shown
by the steepness of the curve) and the other binary predictors of object
drop, making it an important factor in an expanded model of indefinite
object drop. In English it has an effect too, but less evident.

10.1.3 Comments on semantic selectivity

In addition to the presence of additional constraints in the models, the
other dimension of variation highlighted in Table 9.1 in Section 9.1.1
is the measure used to quantify semantic selectivity in the models. In
particular, I computed three families of models, each based on Resnik’s
SPS (as in Medina’s original model), on Computational PISA, or on
Behavioral PISA. In Section 9.1.3, I provided adjusted R2 scores of each
model in each family, showing that in English SPS-based models are
the worst-performing, while PISA-based models are noticeably better
(with Behavioral PISA being better than Computational PISA). In Italian,
instead, Computational PISA-based models are the worst-performing,
followed by SPS-based models and, lastly, by Behavioral PISA-based
models.
In Chapter 9, I provided a possible explanation of these facts, together
with the correlations between semantic selectivity and average Likert
grammaticality ratings presented in Section 8.2.1 and Section 8.3.1, by
making reference to the way each measure of semantic selectivity is
defined and computed (as detailed in Section 6.1). Let us consider
the different performance of the three families of models in the light
of Section 6.1.4, where I evaluated the correlations between the three
measures of semantic selectivity both in English and in Italian. I argued
that the English facts (SPS-based models being worse than PISA-based
models, and SPS correlating poorly with PISAs while Behavioral PISA
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and Computational PISA correlate well with each other) may depend on
the nature of these measures, considering that both PISA measures are
based on the computation of pairwise similarity scores (distributional
cosine similarity for Computational PISA, Likert-scale human judgments
of similarity for Behavioral PISA), while SPS suffers from all the problems
of taxonomy-based measures, as discussed in Section 6.1. The Italian
picture is different, since in this case Computational PISA-based models
perform worse than SPS-based models. Interestingly, as shown in Section
8.3.1, Computational PISA in Italian correlates very well with SPS (even
better than with Behavioral PISA). I take this to mean that even after the
manual cleansing I performed to purge any artifacts from the corpus
data (recounted and motivated on Page 96), the itWaC corpus, upon
which I based the computation of SPS and Computational PISA relative
to Italian, has a stronger effect on the resulting scores than the ukWaC
corpus, which I used to model the computational measures of semantic
selectivity in English.
However, there may also be some undesirable side effect generated by the
choice of ukWaC for English, given that I was able to reproduce Medina’s
findings relative to indefinite object drop in English with my three-
predictor PISA-based models, but not with SPS, which is the measure
she used (refer to Section 9.3.1). This may depend either on the corpus of
choice or on the set of target verbs (or on both), but I am confident I can
take the verbs off the suspect list because I made sure to include strictly
transitive, as much as possible monosemous, verbs in my set (refer to
Section 7.2), while Medina used the same verbs included in Resnik’s
(1993) original computation of SPS, a set also including verbs such as to do,
to get, to have. Thus, I conclude that I was not able to reproduce Medina’s
model using SPS because of the corpus I used. It would be possible to test
this hypothesis by computing again Medina’s model using her verb set
and ukWaC, and my verb set and the corpus Resnik (and thus Medina)
based his computation on. To conclude, I observe that both in English
and in Italian the best-performing models are based on Behavioral PISA.
This result does not surprise at all, since this measure, being based on
human similarity judgments, can be considered a benchmark model for
semantic selectivity.

10.1.4 Is Optimality Theory the optimal choice?

In Chapter 4, I provided several arguments in favor of the use of a
probabilistic model of the implicit indefinite object construction, whose
grammaticality cannot be reduced to a simple matter of being binarily
acceptable or unacceptable. Indeed, different transitive verbs allow indef-
inite object drop to varying degrees based on their semantic selectivity,
and any given transitive verb may show different degrees of grammati-
cality when used intransitively based on other semantic, aspectual, and
pragmatic features. Thus, models where an object-less candidate output
can either be the winner or not (i.e., not accounting for gradience), such as
Yankes’s (2021 [2022]) standard Optimality Theoretic model of indefinite
object drop in English, are doomed to only account for overly simplified
observations about this phenomenon.
Therefore, probabilistic models of grammar are needed to account for
the full range of grammaticality shown by the implicit indefinite object
construction. Having evaluated several such models with respect to their
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4: As discussed in Chapter 5 and Chapter
6, Medina (2007) modeled it via Resnik’s
(1993) Selectional Preference Strength
taxonomy-based measure, while in this
dissertation I also used Computational
PISA (a novel similarity-based measure
stemming from distributional semantics
I contributed to define in Cappelli and
Lenci (2020)) and Behavioral PISA (an-
other similarity-based measure obtained
via human judgments).

applicability to the problem at hand, I argued in particular in favor of
Stochastic Optimality Theory, since it has appealing properties the other
models under examination lack. For instance, Harmonic Grammar was
argued by Kuhn (2002) to bemathematically too powerful to be respectful
of linguistic theory, since constraint weights can be re-adjusted until they
yield results compatible with the observed typology. In a linguistically
motivated model this should be done via modifications of the constraint
set, rather than via numerical tweaks, and for this exact reason standard
Optimality Theory (insufficient, as previously argued, for studies on
indefinite object drop) was created on the basis of Harmonic Grammar.
Keller’s (1997) Extended Optimality Theory is a first step towards mod-
eling gradient grammaticality, since it expresses the grammaticality of
candidates as a ranking, instead of having a single winner and several,
equally ungrammatical, losers. However, these rankings are not com-
parable across candidate sets (since they only have ordinal meaning),
and gradient grammaticality judgments are only used to provide the
candidates with a ranking.
Stochastic Optimality Theory, "the best motivated and most thoroughly
probabilistic extension to Optimality Theory" according to Manning
(2003, p. 25), defines the gradient grammaticality of a candidate as a
function of the number and type of constraint re-rankings returning it as
optimal. Crucially, the simultaneous optimality of multiple candidates
is achieved by having constraints float on a continuous numerical scale.
In its classic definition, presented in Section 4.2.4, Stochastic Optimality
Theory assigns to each constraint a probability distribution (a normal
distribution of values defined by a Gaussian curve), and the overlap
between two such distributions determines the probability of the two con-
straints being re-ranked with respect to one another. Such a framework is
indeed a well-thought-out choice to model the gradient grammaticality
of indefinite object drop. However, classic Stochastic Optimality Theory
cannot account for the effect of semantic selectivity straight out of the
box, if one intends to measure it properly as a gradient property4 of
verbs. Indeed, it is not possible to force gradient semantic selectivity into
a binary constraint without losing significant explanatory power. For
this reason, Medina (2007) devised a variant of Stochastic Optimality
Theory (presented in Chapter 5) where the constraints re-rank based
on the input verb’s semantic selectivity rather than on the overlap of
normal probability distributions. In particular, the probability of each
faithfulness constraint, penalizing object drop, re-ranking with respect
to the *Int Arg markedness constraint, favoring object drop, is expressed
as a linear function of the verb’s semantic selectivity.
To conclude, Medina’s variant of Stochastic Optimality Theory, which I
adopted in this dissertation, appears to be the optimal choice to model
indefinite object drop, since it leverages the many attractive features
of the classic version of the theory while also accounting for the effect
of gradient semantic selectivity on the gradient grammaticality of null
objects. More accurately, it is the optimal choice for a model of indefinite
object drop so far. As I will sketch out in Section 10.2.2, future research
may reveal that non-linear functions can yield better predictions than
linear functions.



168 10 Conclusions and open questions

10.2 Future directions

10.2.1 Expanding the model

Additional predictors Among the linguistic factors facilitating indef-
inite object drop presented in Chapter 3, I only picked five to serve
as predictors in my models (detailed in Chapter 6), namely: semantic
selectivity, telicity, perfectivity (all three from Medina’s (2007) original
model), manner specification, and iterativity (two novel additions), for
reasons detailed in Section 3.5. Theway these predictors are implemented
in the (linear) Stochastic Optimality Theoretic models was explained in
Chapter 5 relative to Medina’s model and in Chapter 9 relative to mine.
Future research may expand upon my models in the same way I ex-
panded upon Medina’s, namely, by introducing additional predictors
in the model based on theoretical literature. A relevant area of interest,
which I only brushed against by including iterativity (a broadly-intended
pragmatic factor) in my model, is that of pragmatic and discourse factors
(refer to Section 3.3). Since out-of-context utterances only happen in
laboratory environments, research on pragmatic and discourse factors
will provide much more ecological data to studies on indefinite object
drop. However, this should not be intended as a potshot at models based
on no-context stimuli, such as Medina’s and the ones proposed in this
dissertation. Indeed, given that the same semantic and aspectual factors
determine indefinite object drop both in context-rich and in no-context
utterances, it makes sense to model these factors first and to add contex-
tual factors later on. Moreover, a word of caution is needed regarding
the possible addition of pragmatics to experiment on indefinite object
drop, since sufficient context may make virtually any object recoverable
and, thus, any transitive verb acceptable when used intransitively. Thus,
experiments including intra- and extra-linguistic contexts will have to
be carefully calibrated in order to quantify the exact role of each type
of context, and to avoid having context-external factors confound the
experiment.
Given that indefinite object drop challenges prototypical transitivity, it
would also be interesting to include in the model the neglected parame-
ters described by Hopper and Thompson (1980) (refer back to Table 2.1
in Section 2.1), in particular affirmation, mode, agency (strictly related
to Agent affectedness, discussed on Page 25 and in Section 3.1.2), and
affectedness of the object (tackled in Chapter 2).

Corpus frequencies As shown in Boersma (2004) and Boersma and
Hayes (2001), Stochastic Optimality Theory can be used to model corpus
data just as well as grammaticality judgments, namely, via the evaluation
of constraints that get re-ranked along a continuous numerical scale (refer
to Chapter 4). Rather than trivially duplicating the results I obtained and
discussed in this dissertation, new models of corpus frequencies are sure
to shed a different light on the implicit indefinite object construction. As
I anticipated in Section 3.4, neither Resnik (1993, 1996) nor Medina (2007)
found a precise correlation between corpus frequencies and the gradient
grammaticality judgments provided in behavioral experiments about
implicit indefinite objects.
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5: The authors also observe that this is not
a measurement artifact due to the use of
a capped scale, such as binary or 7-point
Likert ratings, because it is also foundwith
Magnitude Estimation ratings, which are
open-ended both at the top and at the
bottom.

6: Provided the corpus is annotated in
such a way as to make data extraction
easy, of course.

7: Also, possibly under-representative of
the language one intends to study, given
that even in corpora that are not genre-
specific it is difficult to obtain complete
coverage of language uses and contexts.

Indeed, linguistic research has long since shown that there is no clear-
cut correspondence between ratings elicited from native speakers and
corpus frequencies (Manning 2003). In particular, it is often the case that
low-frequency utterances (or other linguistic items) receive mid-to-high
acceptability judgments in behavioral experiments (Bader and Häussler
2010; Bermel and Knittl 2012; Boersma 2004; Keller and Asudeh 2002;
Kempen and Harbusch 2005). There is also no strict relation between the
relative grammaticality of a linguistic structure with respect to another
and their relative corpus frequencies, since, for instance, Bader and
Häussler (2010, pp. 315–316) report that they found no pairs of syntactic
structures in their study where a member of the pair was judged as
more grammatical than the other but occurred with a smaller frequency
in the corpus, while Boersma (2004) argues in favor of the opposite.
Moreover, Bader and Häussler (2010) experimental results show both
a "ceiling mismatch"5 (meaning that two syntactic structures may be
judged as maximally grammatical, but occur with different frequencies in
the corpus) and a "floormismatch" (meaning that two syntactic structures
may never or almost-never occur in the corpus, but receive different
acceptability judgments).
A common worry about linguistic research based on corpus material is
that frequencies are less reliable than human judgments because there is
no way to control language production as one controls an experimental
design. This line of reasoning would surely curb easy enthusiasm about
the replication of the current study to model corpus frequencies of
indefinite object drop, if Kempen and Harbusch (2008) and Schütze (1996
[2016]) did not observe that acceptability ratings are too "contaminated
by performance factors", that is to say, biased by other tasks the raters
perform in addition to the one they are explicitly asked to carry out
(e.g., they judge the similarity between the target sentence and the
one they consider its "ideal delivery" paraphrase). Thus, if linguistics
gladly relies on acceptability judgments (and, oftentimes, the results
of one’s own introspection), provided they are based on a rigorous
experimental design, there should be no qualms about modeling corpus
frequencies, provided they are interpreted in the light of the factors
possibly influencing them. In general, given that no experimental method
is error-free, it is good practice to compare the results obtained with
different methods. In the specific case of studies on indefinite object drop,
there may be a trade-off between the analysis of easily computable6
frequencies extracted from non-manipulable7 corpus utterances, and
the analysis of acceptability judgments provided by human subjects on
easily manipulable experimental stimuli.
Modeling corpus frequencies of indefinite null objects using the very same
model(s) defined in this dissertation may present additional challenges
if compared to modeling acceptability ratings, since it is impossible
to manipulate aspectual and discourse factors in a corpus study as
in a behavioral experiment. However, the possible absence (or very
low frequency) of a given object-less verb in a given aspect may well
be considered an interesting, modelable datum in itself, provided one
adjusts the model to account for such findings. Alternatively, it would be
possible to design a production experiment to design an ad-hoc corpus
to model the frequency of indefinite null objects in controlled speech
or writing. It is also important to note that it would be possible, if not
even easy, to include discourse and world-knowledge context (somewhat
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8: Interestingly, Gillon (2006, pp. 9–12)
andRuppenhofer,Gorinski, and Sporleder
(2011, p. 333) observe that in some pairs
of near-synonym verbs, such as to leave,
to vacate and to arrive, to reach, only one
member of the pair allows for the omission
of the locative phrase. This is consistent
with the literature on the role of manner
specification in argument omission (refer
to Section 3.1.3).

ancillary to semantics and aspectual factors in this dissertation) in a
model of object drop based on frequencies extracted from a large corpus,
given that these null objects appear in sentences which are part of larger
documents with explicit context information. Moreover, a corpus study
of object drop may provide an answer to a question foreshadowed by
Kempen and Harbusch (2005) and Medina (2007) (refer to Section 3.4),
namely, whether a "production threshold" exists blocking mid-to-low
grammaticality structures from ever being uttered and, if so, which
numerical value has to be assigned to this threshold.

Other implicit complements of verbs Direct object of optionally tran-
sitive verbs are far from being the only NP complements of verbs partici-
pating in syntactic omissions. For instance, the literature mentions:

I Agents of passives, as in The ship was sunk ∅Agent (Bhatt and
Pancheva 2017; Lasersohn 1993; Ruppenhofer and Michaelis 2014);

I Source (Gillon 2006), Goal (Lasersohn 1993; Ruppenhofer and
Michaelis 2014), andPath (Recanati 2002) locative phrases occurring
with motion verbs8 , as in Bill left ∅Source, Hilary arrived ∅Goal, and
The cow jumped over ∅Path;

I Themes of reflexive (Peter shaved (himself)) and reciprocal (Mary and
Peter divorced (from each other)) predicates (Németh 2014);

I Recipients of three-argument verbs, as in The mayor donated $300
∅Recipient (Ruppenhofer 2005);

I Instruments, as in The executioner beheaded the prisoner ∅Instrument
(Koenig, Mauner, and Bienvenue 2002, 2003; Koenig, Mauner,
Bienvenue, and Conklin 2007; Rissman 2010; Rissman and Rawlins
2017; Rissman, Rawlins, and B. Landau 2015).

Among all these syntactically optional complements of verbs, Instruments
stand out because they can also be semantically optional. Indeed, Koenig,
Mauner, and Bienvenue (2002, 2003) and Koenig, Mauner, Bienvenue,
and Conklin (2007) divided Instrument-taking verbs into two classes,
i.e., the Require-Instrument class (to chop, to slice, to write) and the Allow-
Instrument class (to eat, to break, to open). In Cappelli and Lenci (2020), I
computedComputational PISA scores of Instrument-taking English verbs
(togetherwith transitive verbs, as discussed in Section 6.1.2), showing that
this measure of semantic selectivity can reliably tell apart Require- and
Allow-Instrument verbs. I argue that this is a promising starting point in
a possible computational model of the factors regulating the syntactic
optionality of Instruments, given the insight this method provided in the
study of indefinite object drop.
Modeling Instruments, as well as the other implicit complements listed
in this Section, will provide useful information to further theoretical and
experimental research on syntactic optionality.

Indefinite object drop diachronically As argued in Section 3.4, with
reference to Glass (2020), Goldberg (2001, 2005b), and Lorenzetti (2008),
verbs appearing in generic contexts with a habitual interpretation (e.g.,
Pat drinks; Pat smokes; Chris sings; Sam bakes, from Goldberg (2001, p. 518))
are likely to participate in the implicit indefinite object construction, due
to Goldberg’s principle of Omission under Low Discourse Prominence.
Diachronically, the frequent use of transitive verbs in such contexts
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9: Refer to Hilpert and Gries (2016) for an
introduction to quantitative approaches to
diachronic corpus linguistics mentioning
several corpora of English.

10: Available as Windows-only soft-
ware on a DVD distributed online at
https://www.zanichelli.it/ricerca/prodotti/
biblioteca-italiana-zanichelli.

probably led to the grammaticalization of their intransitive use in episodic
contexts as well, often with a specialized meaning (e.g. ’to drink alcohol’
in Pat drinks, ’to bake pastries’ in Sam bakes).
A model of indefinite object drop in historical and contemporary texts (a
gap in the literature first observed byGoldberg (2001)) would substantiate
this hypothesis and shed some more light on the mechanisms regulating
the role of semantic and aspectual predictors in addition to discourse
factors. Moreover, diachronic change also affects semantic selectivity
(which, as discussed in Chapter 2, Chapter 3, and Chapter 6 is a major
predictor of indefinite object drop) and other facets of verb meaning. For
instance, verbs may undergo semantic changes expanding the range of
their meaning (e.g., Vulgar Latin *adripare ’to reach the shore’ gave rise to
Italian arrivare ’to arrive’), shifting it from a concrete to a metaphorical
interpretation (e.g., to broadcast originally meant ’to cast seeds widely’ on
a field, while the rise of communication technologies in the 20th century
shifted its meaning to ’spread amessage or news widely’), or restricting it
(e.g., Latin cubare ’to lie, to rest’ became Italian covare ’to brood’, referring
to the lying act performed by egg-laying animals to nurse their eggs).
Several corpora of English and Italian are available for a diachronic study
on indefinite object drop, each focusing on different text types within
different time spans. Among the diachronic corpora of English9 , relevant
ones to inquire about null objects may be:

I the Helsinki Corpus of English Texts (Rissanen 1993), spanning
over Old (V-XII centuries) to Early Modern (late 15th - late 17th
centuries) English, and covering many different genres (such as
chronicles, handbooks, laws, and Bible excerpts);

I the Corpus of Late Modern English Texts (De Smet 2005; De Smet
et al. 2015), covering public domain British English texts from 1710
to 1920;

I the Corpus of Historical American English (Davies 2010, 2012),
recently purged of inconsistent lemmas and malformed tokens
(Alatrash et al. 2020), a large-scale (around 400 million words)
corpus covering different genres (newspapers, fiction and non-
fiction books, magazines) from 1810 to 2009.

As for Italian, relevant diachronic corpora may be:

I DiaCORIS (Onelli et al. 2006), a 100-million-word corpus of texts
written between 1861 (year of the National Unification) and 1945
covering genres such as newspapers, fiction, and academic prose;

I theMIDIA corpus (Gaeta et al. 2013; Iacobini, De Rosa, and Schirato
2014), a 7-million-word corpus of documents written between the
13th and the 20th centuries;

I the OVI corpus (Larson, Artale, and Dotto 2005), a half-million
word corpus of texts from the 12th to the 14th centuries;

I a diachronic corpus of newspaper articles published on "L’Unità"
(Basile et al. 2020), the official newspaper of the Italian Communist
Party from 1924 to the dissolution of the Party in 1991, published
between 1924 and 2015.

While not assembled with linguistic research in mind, unlike the afore-
mentioned corpora, the collection of over 1000 literary works written
throughout the whole history of Italian literature offered in the Biblioteca
Italiana Zanichelli10 may provide useful insight as to indefinite object

https://www.zanichelli.it/ricerca/prodotti/biblioteca-italiana-zanichelli
https://www.zanichelli.it/ricerca/prodotti/biblioteca-italiana-zanichelli
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11: Without detracting, of course, from the
several transitions the grammar of Italian
underwent in the several centuries of its
history.

drop in Italian literature.
In theory, the wider the time span covered by a given diachronic corpus,
the better. A corpus ranging over several centuries of written language
would indeed provide a broader perspective on the possible grammati-
calization of null objects outside habitual contexts, rather than a corpus
covering a shorter span of time. However, it may also be the case that
changes in grammar happened much faster in the last century, when
distant communication became possible, literacy was not an upper-class
privilege anymore, and, in the last 30 years or so, English became the
main language of the internet. As for Italian, Basile et al. (2020) observe
that deep changes occurred in this language during the second half of the
20th century11 . Thus, it is possible that use-dependent pressures towards
the grammaticalization of null objects are more evident in corpora focus-
ing on the last century, than on previous time periods. Moreover, subtle
changes of this kind are surely more frequent and observable in corpora
based on spoken language, or language written to be read shortly after
(such as the one used in newspapers and other mass media). Thus, both
broad diachronic corpora and 20th-century corpora may be of use to
understand the history of indefinite object drop.

Typologically different languages In this dissertation, I modeled the
implicit indefinite object construction in English and Italian, two typo-
logically close languages. As discussed in Chapter 9, several differences
between the two emerged with respect to their licensing of indefinite null
objects, meaning that this phenomenon depends on much finer-grained
aspects than what typology alone would warrant. Nevertheless, a theory
of grammar should not be a theory of English and English-like languages
alone, and therefore a comprehensive model of indefinite object drop
should consider a variety of typologically different languages.
As noted by Jackendoff (2003, p. 134), languages such as Korean and
Japanese (to which we may add Chinese) allow for null arguments
more easily than English, so that they would pose "no justification for
distinguishing between obligatorily and optionally expressed semantic
arguments". However, in the same paragraph he also argues in favor of
the distinction between definite and indefinite null objects being a fully
idiosyncratic lexical property of verbs or, at most, of semantic verb classes,
a position which I argued against throughout Chapter 2 and Chapter 3.
Thus, it is not to be excluded that languages such as Korean, Japanese, and
Chinese may show different degrees of acceptability of indefinite object
drop with different optionally transitive verbs, even if they are free in
their Topic-drop-based licensing of definite null objects (just like English
and typologically similar languages are, as argued on Page 13). Another
aspect differentiating these languages from languages such as English
and Italian, with respect to aspects playing a role in object drop, is their
treatment of non-culminating accomplishments. Indeed, while in English
the sentence *I burned it but it didn’t burn is utterly ungrammatical due to
being contradictory, its Japanese equivalent (moyashita keredo moenakatta,
as reported in Radden and Seto (2003, p. 236)) is grammatical because the
verb moyasu ’to burn’ is less focused on the result than its English coun-
terpart —it is, thus, a non-culminating accomplishment. The existence
of such verbs made Ikegami (1991) distinguish between DO-languages
such as English, focusing on the Agent, and BECOME-languages such
as Japanese, focusing on the process. Indeed, given the considerations
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provided in Section 2.4.2 relative to indefinite object drop as amechanism
driven by the need to focus on the activity rather than on its effects on the
Patient, it stands to reason that BECOME-languages should allow object
drop more often and in a wider variety of contexts than DO-languages.
Another typologically different family, namely, Slavic languages, may
shed light on the role played by grammatical aspect in the implicit in-
definite object construction. As mentioned in Section 3.2.2, simplifying
a very long tradition of studies in a way that will surely disgruntle
many of those who fostered research in this area, in Slavic languages
perfectivity is embedded in the lexicon rather than being expressed
morphologically (as in English and Italian). To be more precise, in Slavic
languages the opposition between so-called perfective and imperfective
verbs actually derives from the encoding (or lack thereof) of telicity in
the verb (Bertinetto 2001; Bertinetto and Delfitto 2000; Bertinetto and
Lentovskaya 2012). In a diachronic perspective, discussed in Bertinetto
and Lentovskaya (2012) relative to Russian, the loss of the overt aspec-
tual markers in the passage between Old Slavonic to (Northern) Slavic
languages gave rise to a syncretic system merging lexical aspect and
grammatical aspect. The opposition between prefixed and simple verbs
in Russian is interpreted as "unmistakable evidence" of the original
distinction being one of lexical, not grammatical, aspect. Crucially, since
so-called imperfective Slavic verbs can be used in perfective contexts,
and given that so-called perfective verbs are always ungrammatical with
null objects (Sopata 2016; Tsimpli and Papadopoulou 2006), experiments
relative to indefinite object drop in Slavic languages (be they corpus-
based or judgment-based) should only focus on the realization of implicit
objects with imperfective transitive verbs. I take this state of affairs to
mean that Perf Coda acts as a hard constraint in Slavic languages, being
always re-ranked above *Int Arg for perfective inputs (refer to Chapter
5 and Chapter 9), instead of being a soft, re-rankable constraint as it is
in English and Italian. Indeed, as discussed in Section 3.2.3, in these
two languages telicity, perfectivity and tense are intertwined, so that
the interpretation of one factor partially depends on the others. This
explains why in my models telicity and (secondarily) perfectivity both
play a gradient role in favoring object drop, depending on each verb’s
semantic selectivity, despite the behavioral experiments being carefully
designed to isolate the effect of each factor at play. Based on previous
considerations, I hypothesize that a model of indefinite object drop in
Slavic languages would paint quite a different picture.

10.2.2 Different math

In this dissertation I followed Medina (2007) in providing a Stochastic
Optimality Theoretic model of indefinite object drop (see Chapter 5)
where the binary predictors described in Chapter 6 are used to define
four faithfulness constraints re-ranking with respect to *Int Arg (a
markedness constraint). Semantic selectivity, modeled along a continuous
numerical scale, cannot give rise to a binary constraint itself. Instead,
Medina implements it in the model by defining the probability of each
faithfulness constraint re-ranking with respect to *Int Arg as a (linear)
function of the semantic selectivity of the input verb, deviating from the
Stochastic Optimality Theoretic norm of associating fixed normal curves
to constraints (refer to Section 4.2.4). However, as Medina (2007, p. 110)
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herself comments, there is no compelling reason why these re-ranking
functions should be necessarily linear functions. Indeed, she argues that
linear functions are "a reasonable place to begin to explore the relative
contribution of Semantic Selectivity to the implicit object construction",
and I followed in her steps to obtain models comparable to hers. Future
research on indefinite object dropmay benefit from employing non-linear
functions, defining a more complex algorithm than the one used here to
determine the best function and its parameters.
Going back to linear Stochastic Optimality Theoretic models of object
drop, in Section 9.3.2 I commented on the differences between them
and linear mixed-effects models, which are linear regression models
including both fixed and random effects in the computation. Mixed
models, by their very nature, are able to account both for the effect of the
predictors of object drop on the grammaticality of indefinite null objects
(the fixed effects), and for the effect of the source of random variability in
the data, i.e., the target verbs and the participants to the experiment (the
aptly-named random effects). Medina’s model and my own, instead, are
more like classic linear regression model in that they only account for
fixed effects. I minimized any effect the human participants may have
had on the results by modeling their normalized ratings (refer to Section
8.1.2), but this pre-processing adaptation of the Likert ratings is more of
a quick fix than the kind of solid method I endorse for future research.
Indeed, ideally the model should take raw ratings as input, and not only
account for the different use the participants made of the Likert scale,
but also quantify the amount of variance in the data depending on the
participants alone. The same goes for random effects depending on the
target verbs, which my models are not able to compute.

10.2.3 A follow-up on recoverability and prototypicality

In Section 2.3.2, I argued, with reference to the literature, that indefinite
null objects refer to the prototypical Patients of a given transitive verb, as
recovered by speakers viaworld knowledge.However, this prototypicality
is not to be intended as a monolith. Rather, it depends on extra- and
intra-linguistic context, as it is possible to argue based on Rice’s (1988)
examples in (1). In (1-a), the act of smoking is intended to refer to cigarettes,
because they are the most common object of smoking in contemporary
Western society, but different context (such as a mention to olden times,
or a Middle-East setting) may induce a reading where the omitted object
refers to a pipe or a waterpipe. In (1-b), the act of drinking is linked to
alcohol assumption for reasons made clear in Chapter 2 and Section 3.1.2,
but it would necessarily refer to some other prototype were the subject a
toddler or a teetotaler, let alone a non-human participant. Similarly, John
may be understood to drive a bike in (1-c) and to read a newspaper in (1-d),
provided slight differences in the available context (e.g., a downtown
location to drive to, or a different reading time).

(1) a. John smokes (cigarettes / *Marlboros / *a pipe / *SMOKING
MATERIALS).

b. John drinks (alcohol / *gin / *water / *coffee / *LIQUIDS).
c. When he goes to Boston, John drives (a car / *a Toyota / *a

motorcycle / *A VEHICLE).
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12: This task tackles a different problem
than the one this thesis focused on (i.e.,
modeling the grammaticality of object-less
transitive verbs).

d. Each afternoon, John reads (a book / *Ulysses / *the newspa-
per / *PRINTED MATTER).

Therefore, possibly enriching some additional models I envisioned in
Section 10.2.1, it may be useful to design an experiment targeted at the
prototypicality12 intrinsic to object recoverability. I would imagine a cloze-
test experiment where subjects have to fill in the gap in sentences such as
John smokes ___, manipulating context as to have no-context sentences,
common-sense contexts, and uncommon contexts. I hypothesise that
there would be much greater agreement between participants relative to
the fillers of common-context stimuli and no-context stimuli (where the
context is inherently provided via world knowledge), than the agreement
relative to uncommon-context stimuli (where it is difficult to imagine
prototypicality).
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This appendix collects the English and Italian verbs used in the stimuli
of the behavioral experiment eliciting acceptability judgments about the
implicit object construction, as explained in full detail in Section 7.2.
These data are also available on my GitHub profile∗. The stimuli used in
the behavioral experiment are listed in the same GitHub repository and
here in Appendix D.

A.1 Target verbs

A.1.1 Matching English and Italian verbs

English Italian

behead decapitare
break rompere
build costruire
chop spaccare
clean pulire
cook cucinare
cut tagliare
devour divorare
doodle scarabocchiare
drink bere
eat mangiare
embroider ricamare
hum canticchiare
kill uccidere
knife accoltellare
poison avvelenare
polish lucidare
pour versare
sew cucire
sign firmare
sing cantare
sip sorseggiare
slice affettare
smoke fumare
steal rubare
swig trangugiare
teach insegnare
wash lavare
watch guardare
write scrivere

∗ https://github.com/giuliacappelli/dissertationData

https://github.com/giuliacappelli/dissertationData


178 A Verbs used in the stimuli

A.1.2 English

verb frequency Zipf scores

behead 1674 2.9418
break 196609 5.0116
build 479945 5.3992
chop 15330 3.9036
clean 53629 4.4474
cook 36378 4.2789
cut 158274 4.9174
devour 3447 3.2555
doodle 350 2.2621
drink 56215 4.4679
eat 136063 4.8518
embroider 2689 3.1476
hum 2714 3.1516
kill 140951 4.8671
knife 494 2.4118
poison 4710 3.3910
polish 6360 3.5215
pour 26960 4.1487
sew 4141 3.3351
sign 168608 4.9449
sing 75238 4.5945
sip 3090 3.2080
slice 9389 3.6906
smoke 21213 4.0446
steal 41619 4.3373
swig 229 2.0779
teach 198500 5.0158
wash 41347 4.3345
watch 170952 4.9509
write 634329 5.5203

A.1.3 Italian

verb frequency Zipf scores

accoltellare 1933 3.0860
affettare 5539 3.5432
avvelenare 8732 3.7409
bere 58875 4.5697
cantare 77281 4.6879
canticchiare 2119 3.1259
costruire 282558 5.2509
cucinare 15135 3.9798
cucire 7029 3.6467
decapitare 3987 3.4004
divorare 10850 3.8352
firmare 126382 4.9015
fumare 28974 4.2618
guardare 358839 5.3547
insegnare 111884 4.8486
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verb frequency Zipf scores

lavare 28971 4.2618
lucidare 2561 3.2082
mangiare 117137 4.8685
pulire 34400 4.3364
ricamare 4727 3.4744
rompere 65876 4.6185
rubare 38715 4.3877
scarabocchiare 563 2.5503
scrivere 855506 5.7320
sorseggiare 3145 3.2974
spaccare 14799 3.9700
tagliare 78147 4.6927
trangugiare 652 2.6140
uccidere 156043 4.9930
versare 91025 4.7590

A.2 Filler verbs

A.2.1 Matching English and Italian verbs

English Italian

clap applaudire
fast digiunare
knock bussare
laugh ridere
limp zoppicare
rest riposarsi
scream urlare
sleep dormire
smile sorridere
stagger barcollare



1: https://github.com/giuliacappelli/
dissertationData

2: https://github.com/giuliacappelli/
behavioralPISA

Behavioral PISA B

B.1 English stimuli . . . . . . . . 180

B.2 Italian stimuli . . . . . . . . . 183

This appendix collects the English and Italian stimuli for the experiments
I ran to compute the Behavioral PISA scores. These data, together with
the full results provided by the participants to the experiment, are also
available on my GitHub profile1 . The Behavioral PISA scores determined
by these stimuli are listed in the same GitHub repository and here in
Appendix C.3.
The code used to generate these stimuli and to compute the final scores
is available on my GitHub profile in a dedicated repository2 .

B.1 English stimuli

verb noun 1 noun 2

behead enemy prisoner
behead enemy woman
behead member man
behead prophet family
behead son prisoner
behead woman member
break cork aircraft
break fibre doll
break phone flag
break timber drill
break valve cord
break vegetation handbag
build bunkhouse tarmac
build cloud arena
build complexity stall
build foundation intention
build manufactory repeater
build radar phone
chop ginger coriander
chop leek apricot
chop nut banana
chop spice bar
chop sprig dill
chop tomato peel
clean book bike
clean boot carpet
clean lab log
clean lock cloth
clean square area
clean wound printer
cook cod kipper
cook drumstick blackberry
cook fries fennel

https://github.com/giuliacappelli/dissertationData
https://github.com/giuliacappelli/behavioralPISA
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verb noun 1 noun 2

cook mixture vinegar
cook plant garlic
cook side dish
cut box content
cut card bullet
cut hull waffle
cut nostril shoelace
cut pine houseplant
cut pine plant
devour animal slug
devour fish cock
devour goat octopus
devour pasture cod
devour people hamburger
devour sweet aphid
doodle animal passage
doodle character design
doodle idea picture
doodle image design
doodle picture drawing
doodle triangle design
drink allergen sauce
drink gel drop
drink infusion syrup
drink poison supplies
drink soda coke
drink wine booze
eat flesh mollusc
eat grub food
eat kinsman supplement
eat plant grass
eat serving honey
eat vegetable protein
embroider banner panel
embroider blouse shirt
embroider embellishment strip
embroider flag crest
embroider garment tapestry
embroider lace shawl
hum chorus track
hum line word
hum music tune
hum passage tune
hum selection riff
hum track theme
kill blacksmith publisher
kill flora rainforest
kill heathen philistine
kill merchant sir
kill officer astrologer
kill sister pal
knife bride man
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verb noun 1 noun 2

knife man wife
knife people man
knife pig people
knife pig rival
knife rival people
poison body husband
poison husband pigeon
poison mother hamster
poison stream body
poison supplies meat
poison water brandy
polish brass silver
polish electrode lens
polish fingernail tongue
polish frame copper
polish helmet lamp
polish phone machine
pour acid rice
pour alloy sugar
pour oil substance
pour sherry champagne
pour soup beverage
pour wine soda
sew cast purse
sew fabric costume
sew flower seed
sew label tag
sew mask pattern
sew work tusk
sign alliance convention
sign apprenticeship application
sign comment document
sign enquiry survey
sign memorial theory
sign receipt bill
sing choir falsetto
sing harmony melody
sing hymn anthem
sing pop rap
sing selection repertoire
sing song carol
sip beer gin
sip cocoa mead
sip concoction beverage
sip latte espresso
sip whiskey vodka
sip wine vinegar
slice chunk piece
slice clay butter
slice garlic turnip
slice image element
slice root bulb



B.2 Italian stimuli 183

verb noun 1 noun 2

slice skin joint
smoke cannabis mushroom
smoke cocaine crack
smoke hemp cocaine
smoke packet dose
smoke pot joint
smoke tobacco cigar
steal chattel kid
steal nappy bell
steal raft patent
steal sugar silver
steal supply videotape
steal wave bucket
swig ale brew
swig brew potion
swig can drop
swig champagne alcohol
swig cider brew
swig pint drink
teach coding recording
teach industry obedience
teach mechanic premise
teach theology prayer
teach topic information
teach tutorial recipe
wash building surface
wash cotton clothing
wash fridge microwave
wash hob sieve
wash nursery drain
wash packaging belongings
watch channel chore
watch coding blossom
watch pizza enhancement
watch product curling
watch screen curve
watch skating childhood
write justification dissertation
write missive opera
write paragraph essay
write review assertion
write synopsis analysis
write topography license

B.2 Italian stimuli

verb noun 1 noun 2

accoltellare amico autore
accoltellare cognato agente
accoltellare controllore ispettore
accoltellare marocchino connazionale
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verb noun 1 noun 2

accoltellare persona tifoso
accoltellare ragazzino uomo
affettare cipolla carciofo
affettare cipolla motociclista
affettare oliva zucca
affettare pane carne
affettare porro cuore
affettare prosciutto salame
avvelenare banana donna
avvelenare batterio animale
avvelenare gatto polmone
avvelenare insetto figlio
avvelenare sposo criminale
avvelenare tessuto sangue
bere bibita aperitivo
bere carburante fluido
bere latte bibita
bere sostanza medicina
bere the succo
bere veleno tisana
cantare brano storia
cantare preghiera messa
cantare rima epopea
cantare singolo coro
cantare storiella leggenda
cantare testo orazione
canticchiare canzone motivo
canticchiare canzonetta musica
canticchiare hit ritmo
canticchiare incantesimo poesia
canticchiare strofa ninna
canticchiare tema canzoncina
costruire carro scettro
costruire cinta istituto
costruire gommone diga
costruire lanterna croce
costruire roccaforte imballaggio
costruire scaletta gabinetto
cucinare boccone banchetto
cucinare carne filetto
cucinare cibo ripieno
cucinare grigliata prelibatezza
cucinare pesce tonno
cucinare zampa pollo
cucire bambola pezza
cucire biancheria reggiseno
cucire divisa corredo
cucire filo stendardo
cucire margine cappotto
cucire veste giacca
decapitare banda membro
decapitare corpo donna
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verb noun 1 noun 2

decapitare famiglia cittadino
decapitare ostaggio americano
decapitare uomo mostro
decapitare venditore morto
divorare abitante uomo
divorare albero radice
divorare capo cuore
divorare figlio nemico
divorare raccolto pascolo
divorare topo malcapitato
firmare appello proposta
firmare email revoca
firmare introduzione trattativa
firmare querela annuncio
firmare rivista libretto
firmare sceneggiatura nota
fumare erba canapa
fumare filtro sigaretta
fumare fumo gomma
fumare oppio cocaina
fumare pacchetto sigaro
fumare paglia incenso
guardare asino parabola
guardare emisfero basket
guardare freccia gioco
guardare preferenza copertura
guardare programma mantello
guardare risorsa veduta
insegnare derivata meccanismo
insegnare regia psicologia
insegnare regola strategia
insegnare stile sistema
insegnare teologia chirurgia
insegnare tradizione culto
lavare barattolo scala
lavare barba guancia
lavare calzino lana
lavare cisterna stalla
lavare costume prodotto
lavare seno collo
lucidare cerchio catena
lucidare legno superficie
lucidare moto vetro
lucidare mouse posata
lucidare pistola armatura
lucidare telaio mobile
mangiare banana patata
mangiare carota antipasto
mangiare formaggio pasto
mangiare panettone topo
mangiare trota corvo
mangiare zucchina verdura
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verb noun 1 noun 2

pulire ambiente foresta
pulire cenere cisterna
pulire ingresso passaggio
pulire macchia sangue
pulire pennello occhio
pulire radice terra
ricamare carattere logo
ricamare contorno trama
ricamare coperta lenzuolo
ricamare logo opera
ricamare sfondo copertina
ricamare velo mantello
rompere ginocchio polso
rompere maglia filo
rompere marmo cristallo
rompere rivestimento telecomando
rompere sottomarino barattolo
rompere vetrina recinto
rubare album bottiglia
rubare archivio ala
rubare bicchiere elemosina
rubare fetta milione
rubare manufatto informazione
rubare progetto migliaio
scarabocchiare appunto pensiero
scarabocchiare foglio quaderno
scarabocchiare libro carta
scarabocchiare nome firma
scarabocchiare pagina disegno
scarabocchiare pagina frase
scrivere capoverso giallo
scrivere domanda intervento
scrivere email intestazione
scrivere narrazione monologo
scrivere saggio opera
scrivere sottotitolo questionario
sorseggiare acqua the
sorseggiare amaro grappa
sorseggiare bevanda brodo
sorseggiare bibita composto
sorseggiare nettare bibita
sorseggiare sorso succo
spaccare anello tazza
spaccare balla ceppo
spaccare cemento pallina
spaccare chitarra ghiaccio
spaccare finestra tavolo
spaccare ponte asse
tagliare bacca ala
tagliare carne pomodoro
tagliare giacca grembiule
tagliare legame ormeggio
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verb noun 1 noun 2

tagliare legatura lepre
tagliare torta pero
trangugiare birra cappuccino
trangugiare boccone pasto
trangugiare cena minestra
trangugiare pizza panettone
trangugiare pozione bevanda
trangugiare pozione veleno
uccidere appartenente equipaggio
uccidere bastardo parassita
uccidere carne muffa
uccidere prigioniero religioso
uccidere segretario israeliano
uccidere tifoso pregiudicato
versare carburante soluzione
versare inchiostro vernice
versare polpa colla
versare residuo prodotto
versare succo sciroppo
versare veleno bile
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This appendix collects the semantic selectivity scores, telicity feature,
and manner specification of each English and Italian verb of interest.
These data are also available on my GitHub profile∗. The stimuli used in
the Behavioral PISA experiment are listed in the same GitHub repository
and here in Appendix B.
The scripts used to compute the semantic selectivity scores are available
on GitHub here† for Behavioral PISA and here‡ for Resnik’s SPS and
Computational PISA.

C.1 Resnik’s SPS scores

C.1.1 English

verb value

behead 5.41951429109159
break 1.6793306972271176
build 1.0444365443830292
chop 3.438656094289755
clean 1.4409848073158913
cook 3.3312852756730833
cut 2.022539900328247
devour 3.2412081031584195
doodle 3.6684580190582055
drink 3.0733070499044426
eat 2.9666860095348273
embroider 4.676864553416348
hum 3.3698350402403054
kill 3.6808371012416345
knife 0
poison 4.279653745683352
polish 2.296068943151817
pour 2.7724980420575305
sew 2.833979840980959
sign 1.5293797499155062
sing 2.642727020790552
sip 3.3363686807974804
slice 3.5758202575701117
smoke 5.229644753166431
steal 1.8768283472927347
swig 2.8662435216484727
teach 1.6629568673957216
wash 1.8464744191425093

∗ https://github.com/giuliacappelli/dissertationData
† https://github.com/giuliacappelli/behavioralPISA
‡ https://github.com/ellepannitto/PISA

https://github.com/giuliacappelli/dissertationData
https://github.com/giuliacappelli/behavioralPISA
https://github.com/ellepannitto/PISA
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verb value

watch 2.3395754700199665
write 2.239589940207992

C.1.2 Italian

verb value

accoltellare 3.890054972777093
affettare 4.171865123063593
avvelenare 2.787554655603073
bere 3.0177796446611502
cantare 2.362766569982537
canticchiare 2.8050620027560345
costruire 0.7875067657846383
cucinare 3.71382520298977
cucire 3.0016072216417995
decapitare 3.5252440727001564
divorare 3.091973944651725
firmare 1.3281521941994174
fumare 3.1709384554039595
guardare 0.7338795569704666
insegnare 2.0545094983958077
lavare 2.638599775346278
lucidare 2.497534218645052
mangiare 3.042929318310735
pulire 1.5520676487000922
ricamare 2.3608646075158055
rompere 2.244588368992655
rubare 1.7026267535600168
scarabocchiare 2.439636158138708
scrivere 1.8178364364916102
sorseggiare 2.923331966414907
spaccare 2.575603929377065
tagliare 2.5737633430353495
trangugiare 2.9701312620677065
uccidere 3.230657237621352
versare 3.1375585181456485

C.2 Computational PISA scores

C.2.1 English

verb value

behead 0.2665590109890108
break 0.1672398532974804
build 0.14259006152197046
chop 0.250876263920088
clean 0.1701836735398874
cook 0.31215897191016945
cut 0.18466699313592272
devour 0.18176671598824243
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verb value

doodle 0.22332499999999994
drink 0.2691043316531047
eat 0.21487358165625178
embroider 0.2410483984674331
hum 0.37887409183108933
kill 0.18732028544846346
knife 0.2619611111111111
poison 0.1850712748876043
polish 0.20191239599454402
pour 0.24835831137116315
sew 0.22664585367147644
sign 0.20564031937795324
sing 0.3141075723850854
sip 0.37466938967136204
slice 0.25784927497097393
smoke 0.2608563767121237
steal 0.15744235473302504
swig 0.4285276995305164
teach 0.18015142467099565
wash 0.19233420757156694
watch 0.15607432511726602
write 0.20329813297609786

C.2.2 Italian

verb value

accoltellare 0.3079597819593789
affettare 0.46626135248993866
avvelenare 0.22779692116092695
bere 0.3234907686569406
cantare 0.3205721869843004
canticchiare 0.37776087472201647
costruire 0.17287654835175703
cucinare 0.4350583056740942
cucire 0.29180270654834617
decapitare 0.2499725954666117
divorare 0.256135131008793
firmare 0.20475470353876601
fumare 0.3025446626439931
guardare 0.16237313468251074
insegnare 0.1959324326755706
lavare 0.2624123234829927
lucidare 0.26015092597804695
mangiare 0.29584647583123846
pulire 0.21079758204545984
ricamare 0.22094988730807189
rompere 0.23340662139696455
rubare 0.18519251247467175
scarabocchiare 0.26218470824949713
scrivere 0.20467814921049665
sorseggiare 0.4077989860406971
spaccare 0.2667972822445544
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verb value

tagliare 0.24275482460977424
trangugiare 0.3105916099773242
uccidere 0.2148306899420238
versare 0.33561646678650436

C.3 Behavioral PISA scores

C.3.1 English

verb value

behead 0.29055436999022555
break 0.12276836214623506
build 0.21762785567742657
chop 0.34440540442572826
clean 0.17292497041218488
cook 0.33185906739493143
cut 0.2871232879595378
devour 0.23809859297188518
doodle 0.5125231723017851
drink 0.47495494373653285
eat 0.3859282310020324
embroider 0.48347837937372223
hum 0.4604600976785315
kill 0.33436898147194566
knife 0.4052205744674658
poison 0.2141225350611907
polish 0.3294412144676424
pour 0.33449987699263023
sew 0.46365623305930415
sign 0.4745322863537071
sing 0.7019831506086257
sip 0.5707923807178529
slice 0.4286860332412498
smoke 0.6132821453149185
steal 0.09412671500790444
swig 0.5701913824589526
teach 0.4225079780942123
wash 0.4027036029805784
watch 0.12497312517080204
write 0.3776801508375687

C.3.2 Italian

verb value

accoltellare 0.5886637800215203
affettare 0.5885110211271879
avvelenare 0.2953994090101937
bere 0.7764391268585936
cantare 0.7486440386129157
canticchiare 0.7521474918969137
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verb value

costruire 0.24323348807407993
cucinare 0.7835973989735566
cucire 0.6138248655755957
decapitare 0.49898373191487244
divorare 0.5727069147760088
firmare 0.4967896690588007
fumare 0.6936365143704156
guardare 0.19041248697926685
insegnare 0.5121774320314921
lavare 0.5202997492919127
lucidare 0.46611648860671046
mangiare 0.6240360335935481
pulire 0.5684277904658784
ricamare 0.6457925988588612
rompere 0.5456384270051742
rubare 0.22732823115800935
scarabocchiare 0.774598373604205
scrivere 0.575161142941159
sorseggiare 0.7606638064253161
spaccare 0.35800971947008
tagliare 0.4437135136473041
trangugiare 0.758835738433465
uccidere 0.41402756288438985
versare 0.6275661376317657

C.4 Telicity

C.4.1 English

verb telicity in-for progressive conjunction

behead yes yes yes yes
break yes yes yes yes
build yes yes yes yes
chop yes yes yes yes
clean no yes no no
cook no yes no no
cut no no no no
devour yes yes yes no
doodle no no no no
drink no no no no
eat no no no no
embroider no no no no
hum no no no no
kill yes yes yes yes
knife yes no yes yes
poison yes yes yes yes
polish no no no no
pour no no no no
sew no no no no
sign yes yes yes yes
sing no no no no
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verb telicity in-for progressive conjunction

sip no no no yes
slice yes yes yes yes
smoke no no no no
steal yes yes yes yes
swig yes yes yes no
teach no no yes no
wash no no no no
watch no no no no
write no no no no

C.4.2 Italian

verb telicity in-for progressive conjunction

accoltellare yes no yes yes
affettare yes yes yes yes
avvelenare yes yes yes yes
bere no no no no
cantare no no no no
canticchiare no no no no
costruire yes yes yes yes
cucinare no yes no no
cucire no no no no
decapitare yes yes yes yes
divorare yes yes yes no
firmare yes yes yes yes
fumare no no no no
guardare no no no no
insegnare no no yes no
lavare no no no no
lucidare no no no no
mangiare no no no no
pulire no yes no no
ricamare no no no no
rompere yes yes yes yes
rubare yes yes yes yes
scarabocchiare no no no no
scrivere no no no no
sorseggiare no no no yes
spaccare yes yes yes yes
tagliare no no no no
trangugiare yes yes yes no
uccidere yes yes yes yes
versare no no no no

C.5 Manner specification

C.5.1 English
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verb manner specification a manner of...

behead yes kill
break no
build no
chop yes cut
clean no
cook no
cut no
devour yes eat
doodle yes write
drink no
eat no
embroider yes sew
hum yes sing
kill no
knife yes cut
poison yes kill
polish yes clean
pour no
sew no
sign yes write
sing no
sip yes drink
slice yes cut
smoke no
steal no
swig yes drink
teach no
wash yes clean
watch no
write no

C.5.2 Italian

verb manner specification a manner of...

accoltellare yes tagliare
affettare yes tagliare
avvelenare yes uccidere
bere no
cantare no
canticchiare yes cantare
costruire no
cucinare no
cucire no
decapitare yes uccidere
divorare yes mangiare
firmare yes scrivere
fumare no
guardare no
insegnare no
lavare yes pulire
lucidare yes pulire
mangiare no
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verb manner specification a manner of...

pulire no
ricamare yes cucire
rompere no
rubare no
scarabocchiare yes scrivere
scrivere no
sorseggiare yes bere
spaccare yes tagliare
tagliare no
trangugiare yes bere
uccidere no
versare no
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This appendix collects the sentence stimuli for the behavioral experiment
about object drop in English and Italian, each featuring 30 transitive
verbs of interest and 10 intransitive filler verbs (listed in Appendix A).
These data are also available on my GitHub profile∗, together with the
individual judgments provided by 30 participants per language on a
7-point Likert scale.
The Python scripts I wrote to analyse the results and create a Stochastic
Optimality Theoretic model of object drop are available on my Github
profile† in a dedicated repository.

D.1 English

D.1.1 Target sentences

verb dObj perfective iterative sentence

behead no no no Clara was beheading.
behead no no yes Tom was beheading again.
behead no yes no Betty had beheaded.
behead no yes yes Sarah had beheaded again.
break no no no Clara was breaking.
break no no yes Clara was breaking again.
break no yes no Sarah had broken.
break no yes yes Sam had broken again.
build no no no Sarah was building.
build no no yes Paul was building again.
build no yes no Paul had built.
build no yes yes Paul had built again.
chop no no no Sean was chopping.
chop no no yes Clara was chopping again.
chop no yes no Sean had chopped.
chop no yes yes Paul had chopped again.
clean no no no Tom was cleaning.
clean no no yes Sarah was cleaning again.
clean no yes no John had cleaned.
clean no yes yes Diana had cleaned again.
cook no no no Diana was cooking.
cook no no yes John was cooking again.
cook no yes no Betty had cooked.
cook no yes yes Clara had cooked again.
cut no no no John was cutting.
cut no no yes Sam was cutting again.
cut no yes no Sean had cut.

∗ https://github.com/giuliacappelli/dissertationData
† https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory

https://github.com/giuliacappelli/dissertationData
https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory
https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory
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verb dObj perfective iterative sentence

cut no yes yes Tom had cut again.
devour no no no Diana was devouring.
devour no no yes Sam was devouring again.
devour no yes no Paul had devoured.
devour no yes yes Betty had devoured again.
doodle no no no Sarah was doodling.
doodle no no yes Tom was doodling again.
doodle no yes no Paul had doodled.
doodle no yes yes Sam had doodled again.
drink no no no Clara was drinking.
drink no no yes Tom was drinking again.
drink no yes no Sarah had drunk.
drink no yes yes Sarah had drunk again.
eat no no no Betty was eating.
eat no no yes Paul was eating again.
eat no yes no Betty had eaten.
eat no yes yes Sean had eaten again.
embroider no no no Clara was embroidering.
embroider no no yes Sam was embroidering again.
embroider no yes no Sarah had embroidered.
embroider no yes yes Paul had embroidered again.
hum no no no Sam was humming.
hum no no yes Tom was humming again.
hum no yes no Mary had hummed.
hum no yes yes Diana had hummed again.
kill no no no Diana was killing.
kill no no yes Sam was killing again.
kill no yes no Sarah had killed.
kill no yes yes Tom had killed again.
knife no no no Tom was knifing.
knife no no yes John was knifing again.
knife no yes no Diana had knifed.
knife no yes yes Sarah had knifed again.
poison no no no Mary was poisoning.
poison no no yes Paul was poisoning again.
poison no yes no Paul had poisoned.
poison no yes yes Sean had poisoned again.
polish no no no Mary was polishing.
polish no no yes Mary was polishing again.
polish no yes no Paul had polished.
polish no yes yes Betty had polished again.
pour no no no Tom was pouring.
pour no no yes Betty was pouring again.
pour no yes no Tom had poured.
pour no yes yes Mary had poured again.
sew no no no Betty was sewing.
sew no no yes Tom was sewing again.
sew no yes no Betty had sewn.
sew no yes yes Mary had sewn again.
sign no no no Betty was signing.
sign no no yes Sarah was signing again.
sign no yes no John had signed.
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verb dObj perfective iterative sentence

sign no yes yes Mary had signed again.
sing no no no Sam was singing.
sing no no yes Paul was singing again.
sing no yes no Sam had sung.
sing no yes yes Paul had sung again.
sip no no no Paul was sipping.
sip no no yes John was sipping again.
sip no yes no Betty had sipped.
sip no yes yes Sean had sipped again.
slice no no no John was slicing.
slice no no yes Diana was slicing again.
slice no yes no Tom had sliced.
slice no yes yes John had sliced again.
smoke no no no Sam was smoking.
smoke no no yes Diana was smoking again.
smoke no yes no Diana had smoked.
smoke no yes yes Tom had smoked again.
steal no no no Betty was stealing.
steal no no yes John was stealing again.
steal no yes no Diana had stolen.
steal no yes yes Sam had stolen again.
swig no no no Tom was swigging.
swig no no yes Sam was swigging again.
swig no yes no Paul had swigged.
swig no yes yes Sean had swigged again.
teach no no no Sarah was teaching.
teach no no yes Sarah was teaching again.
teach no yes no Clara had taught.
teach no yes yes Sean had taught again.
wash no no no Paul was washing.
wash no no yes John was washing again.
wash no yes no Tom had washed.
wash no yes yes Mary had washed again.
watch no no no Betty was watching.
watch no no yes Sarah was watching again.
watch no yes no Sam had watched.
watch no yes yes Diana had watched again.
write no no no John was writing.
write no no yes Diana was writing again.
write no yes no Paul had written.
write no yes yes Tom had written again.

D.1.2 Control sentences

verb dObj perfective iterative sentence

behead yes no no Tom was beheading a prisoner.
behead yes no yes John was beheading a prisoner

again.
behead yes yes no Tom had beheaded a prisoner.
behead yes yes yes Diana had beheaded a prisoner

again.
break yes no no Sarah was breaking a vase.
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verb dObj perfective iterative sentence

break yes no yes Mary was breaking a vase again.
break yes yes no Paul had broken a vase.
break yes yes yes Tom had broken a vase again.
build yes no no Betty was building a house.
build yes no yes Paul was building a house again.
build yes yes no Betty had built a house.
build yes yes yes Diana had built a house again.
chop yes no no Sarah was chopping a log.
chop yes no yes Diana was chopping a log again.
chop yes yes no Tom had chopped a log.
chop yes yes yes Tom had chopped a log again.
clean yes no no Tom was cleaning a table.
clean yes no yes Sam was cleaning a table again.
clean yes yes no Sam had cleaned a table.
clean yes yes yes Tom had cleaned a table again.
cook yes no no Diana was cooking dinner.
cook yes no yes John was cooking dinner again.
cook yes yes no Mary had cooked dinner.
cook yes yes yes John had cooked dinner again.
cut yes no no Sam was cutting some paper.
cut yes no yes Betty was cutting some paper

again.
cut yes yes no Mary had cut some paper.
cut yes yes yes Paul had cut some paper again.
devour yes no no Paul was devouring a roasted

chicken.
devour yes no yes Sarah was devouring a roasted

chicken again.
devour yes yes no Mary had devoured a roasted

chicken.
devour yes yes yes Betty had devoured a roasted

chicken again.
doodle yes no no Paul was doodling a stick man.
doodle yes no yes Tom was doodling a stick man

again.
doodle yes yes no Sean had doodled a stick man.
doodle yes yes yes Tom had doodled a stick man

again.
drink yes no no Mary was drinking juice.
drink yes no yes Tom was drinking juice again.
drink yes yes no Sarah had drunk juice.
drink yes yes yes Sam had drunk juice again.
eat yes no no John was eating pizza.
eat yes no yes Sean was eating pizza again.
eat yes yes no Sean had eaten pizza.
eat yes yes yes John had eaten pizza again.
embroider yes no no Sam was embroidering a tapestry.
embroider yes no yes Sam was embroidering a tapestry

again.
embroider yes yes no Clara had embroidered a tapestry.
embroider yes yes yes Tom had embroidered a tapestry

again.
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verb dObj perfective iterative sentence

hum yes no no Sam was humming a lullaby.
hum yes no yes Sean was humming a lullaby

again.
hum yes yes no Sam had hummed a lullaby.
hum yes yes yes John had hummed a lullaby again.
kill yes no no Sarah was killing pests.
kill yes no yes Sam was killing pests again.
kill yes yes no Betty had killed pests.
kill yes yes yes Diana had killed pests again.
knife yes no no Betty was knifing a man.
knife yes no yes Sean was knifing a man again.
knife yes yes no Clara had knifed a man.
knife yes yes yes Tom had knifed a man again.
poison yes no no Paul was poisoning a plant.
poison yes no yes John was poisoning a plant again.
poison yes yes no Diana had poisoned a plant.
poison yes yes yes Paul had poisoned a plant again.
polish yes no no Sean was polishing a sword.
polish yes no yes Bettywas polishing a sword again.
polish yes yes no Sam had polished a sword.
polish yes yes yes John had polished a sword again.
pour yes no no Sam was pouring wine.
pour yes no yes Betty was pouring wine again.
pour yes yes no Betty had poured wine.
pour yes yes yes Sam had poured wine again.
sew yes no no John was sewing a curtain.
sew yes no yes Mary was sewing a curtain again.
sew yes yes no Betty had sewn a curtain.
sew yes yes yes John had sewn a curtain again.
sign yes no no Sam was signing a paper.
sign yes no yes Betty was signing a paper again.
sign yes yes no Sean had signed a paper.
sign yes yes yes Sarah had signed a paper again.
sing yes no no Paul was singing a carol.
sing yes no yes Sarah was singing a carol again.
sing yes yes no Mary had sung a carol.
sing yes yes yes Mary had sung a carol again.
sip yes no no Sean was sipping water.
sip yes no yes Mary was sipping water again.
sip yes yes no Tom had sipped water.
sip yes yes yes John had sipped water again.
slice yes no no Sarah was slicing some pie.
slice yes no yes Mary was slicing some pie again.
slice yes yes no Sean had sliced some pie.
slice yes yes yes Mary had sliced some pie again.
smoke yes no no Sarah was smoking a cigarette.
smoke yes no yes Paul was smoking a cigarette

again.
smoke yes yes no John had smoked a cigarette.
smoke yes yes yes Diana had smoked a cigarette

again.
steal yes no no Sean was stealing money.
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verb dObj perfective iterative sentence

steal yes no yes Mary was stealing money again.
steal yes yes no Tom had stolen money.
steal yes yes yes Betty had stolen money again.
swig yes no no Sarah was swigging beer.
swig yes no yes Clara was swigging beer again.
swig yes yes no John had swigged beer.
swig yes yes yes Mary had swigged beer again.
teach yes no no John was teaching linguistics.
teach yes no yes Sarah was teaching linguistics

again.
teach yes yes no Mary had taught linguistics.
teach yes yes yes Sean had taught linguistics again.
wash yes no no Clara was washing a car.
wash yes no yes Tom was washing a car again.
wash yes yes no Betty had washed a car.
wash yes yes yes Sam had washed a car again.
watch yes no no Sean was watching a movie.
watch yes no yes Sarah was watching a movie

again.
watch yes yes no Clara had watched a movie.
watch yes yes yes Tom had watched a movie again.
write yes no no Paul was writing a letter.
write yes no yes Betty was writing a letter again.
write yes yes no Sam had written a letter.
write yes yes yes Clara had written a letter again.

D.1.3 Filler sentences

verb dObj perfective iterative sentence

clap no no no Diana was clapping.
clap no no yes Paul was clapping again.
clap no yes no Mary had clapped.
clap no yes yes Sarah had clapped again.
clap yes no no Mary was clapping a show.
clap yes no yes Sean was clapping a show again.
clap yes yes no Tom had clapped a show.
clap yes yes yes Mary had clapped a show again.
fast no no no Betty was fasting.
fast no no yes Sarah was fasting again.
fast no yes no Sean had fasted.
fast no yes yes John had fasted again.
fast yes no no Clara was fasting sushi.
fast yes no yes Sam was fasting sushi again.
fast yes yes no Diana had fasted sushi.
fast yes yes yes Sarah had fasted sushi again.
knock no no no Betty was knocking.
knock no no yes Sarah was knocking again.
knock no yes no Mary had knocked.
knock no yes yes Sean had knocked again.
knock yes no no Clara was knocking a door.
knock yes no yes Sarah was knocking a door again.
knock yes yes no Diana had knocked a door.
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verb dObj perfective iterative sentence

knock yes yes yes Betty had knocked a door again.
laugh no no no Sam was laughing.
laugh no no yes Tom was laughing again.
laugh no yes no Sam had laughed.
laugh no yes yes John had laughed again.
laugh yes no no John was laughing a joke.
laugh yes no yes John was laughing a joke again.
laugh yes yes no Betty had laughed a joke.
laugh yes yes yes Sean had laughed a joke again.
limp no no no Clara was limping.
limp no no yes Betty was limping again.
limp no yes no John had limped.
limp no yes yes Mary had limped again.
limp yes no no Mary was limping a road.
limp yes no yes Paul was limping a road again.
limp yes yes no Paul had limped a road.
limp yes yes yes John had limped a road again.
rest no no no Sean was resting.
rest no no yes Betty was resting again.
rest no yes no John had rested.
rest no yes yes Sam had rested again.
rest yes no no Betty was resting a bed.
rest yes no yes Mary was resting a bed again.
rest yes yes no Betty had rested a bed.
rest yes yes yes Tom had rested a bed again.
scream no no no Diana was screaming.
scream no no yes Tom was screaming again.
scream no yes no Paul had screamed.
scream no yes yes Sarah had screamed again.
scream yes no no Paul was screaming a spider.
scream yes no yes Paul was screaming a spider

again.
scream yes yes no Tom had screamed a spider.
scream yes yes yes Tom had screamed a spider again.
sleep no no no Diana was sleeping.
sleep no no yes Clara was sleeping again.
sleep no yes no John had slept.
sleep no yes yes Sam had slept again.
sleep yes no no Sarah was sleeping a pillow.
sleep yes no yes Mary was sleeping a pillow again.
sleep yes yes no Sarah had slept a pillow.
sleep yes yes yes Mary had slept a pillow again.
smile no no no Clara was smiling.
smile no no yes Sean was smiling again.
smile no yes no Sam had smiled.
smile no yes yes Paul had smiled again.
smile yes no no Mary was smiling a friend.
smile yes no yes Sean was smiling a friend again.
smile yes yes no Clara had smiled a friend.
smile yes yes yes John had smiled a friend again.
stagger no no no Clara was staggering.
stagger no no yes Clara was staggering again.
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verb dObj perfective iterative sentence

stagger no yes no Mary had staggered.
stagger no yes yes Betty had staggered again.
stagger yes no no Betty was staggering the pave-

ment.
stagger yes no yes Tomwas staggering the pavement

again.
stagger yes yes no Paul had staggered the pavement.
stagger yes yes yes John had staggered the pavement

again.

D.2 Italian

D.2.1 Target sentences

verb dObj perfective iterative sentence

accoltellare no no no Marta stava accoltellando.
accoltellare no no yes Sara stava accoltellando di nuovo.
accoltellare no yes no Sara aveva accoltellato.
accoltellare no yes yes Paolo aveva accoltellato di nuovo.
affettare no no no Gianni stava affettando.
affettare no no yes Luca stava affettando di nuovo.
affettare no yes no Giulia aveva affettato.
affettare no yes yes Paolo aveva affettato di nuovo.
avvelenare no no no Luca stava avvelenando.
avvelenare no no yes Giulia stava avvelenando di

nuovo.
avvelenare no yes no Maria aveva avvelenato.
avvelenare no yes yes Franco aveva avvelenato di nuovo.
bere no no no Giulia stava bevendo.
bere no no yes Giulia stava bevendo di nuovo.
bere no yes no Maria aveva bevuto.
bere no yes yes Sara aveva bevuto di nuovo.
cantare no no no Maria stava cantando.
cantare no no yes Franco stava cantando di nuovo.
cantare no yes no Franco aveva cantato.
cantare no yes yes Franco aveva cantato di nuovo.
canticchiare no no no Marta stava canticchiando.
canticchiare no no yes Paolo stava canticchiando di

nuovo.
canticchiare no yes no Sara aveva canticchiato.
canticchiare no yes yes Franco aveva canticchiato di

nuovo.
costruire no no no Sara stava costruendo.
costruire no no yes Franco stava costruendo di nuovo.
costruire no yes no Marta aveva costruito.
costruire no yes yes Gianni aveva costruito di nuovo.
cucinare no no no Maria stava cucinando.
cucinare no no yes Franco stava cucinando di nuovo.
cucinare no yes no Piero aveva cucinato.
cucinare no yes yes Franco aveva cucinato di nuovo.
cucire no no no Gianni stava cucendo.
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verb dObj perfective iterative sentence

cucire no no yes Marta stava cucendo di nuovo.
cucire no yes no Franco aveva cucito.
cucire no yes yes Luca aveva cucito di nuovo.
decapitare no no no Piero stava decapitando.
decapitare no no yes Paolo stava decapitando di nuovo.
decapitare no yes no Giulia aveva decapitato.
decapitare no yes yes Paolo aveva decapitato di nuovo.
divorare no no no Carla stava divorando.
divorare no no yes Marta stava divorando di nuovo.
divorare no yes no Franco aveva divorato.
divorare no yes yes Sara aveva divorato di nuovo.
firmare no no no Maria stava firmando.
firmare no no yes Piero stava firmando di nuovo.
firmare no yes no Sara aveva firmato.
firmare no yes yes Marta aveva firmato di nuovo.
fumare no no no Gianni stava fumando.
fumare no no yes Carla stava fumando di nuovo.
fumare no yes no Luca aveva fumato.
fumare no yes yes Marta aveva fumato di nuovo.
guardare no no no Franco stava guardando.
guardare no no yes Luca stava guardando di nuovo.
guardare no yes no Gianni aveva guardato.
guardare no yes yes Gianni aveva guardato di nuovo.
insegnare no no no Marta stava insegnando.
insegnare no no yes Sara stava insegnando di nuovo.
insegnare no yes no Paolo aveva insegnato.
insegnare no yes yes Franco aveva insegnato di nuovo.
lavare no no no Giulia stava lavando.
lavare no no yes Luca stava lavando di nuovo.
lavare no yes no Giulia aveva lavato.
lavare no yes yes Franco aveva lavato di nuovo.
lucidare no no no Carla stava lucidando.
lucidare no no yes Sara stava lucidando di nuovo.
lucidare no yes no Giulia aveva lucidato.
lucidare no yes yes Luca aveva lucidato di nuovo.
mangiare no no no Sara stava mangiando.
mangiare no no yes Franco stavamangiando di nuovo.
mangiare no yes no Sara aveva mangiato.
mangiare no yes yes Paolo aveva mangiato di nuovo.
pulire no no no Luca stava pulendo.
pulire no no yes Paolo stava pulendo di nuovo.
pulire no yes no Sara aveva pulito.
pulire no yes yes Piero aveva pulito di nuovo.
ricamare no no no Luca stava ricamando.
ricamare no no yes Franco stava ricamando di nuovo.
ricamare no yes no Giulia aveva ricamato.
ricamare no yes yes Carla aveva ricamato di nuovo.
rompere no no no Paolo stava rompendo.
rompere no no yes Luca stava rompendo di nuovo.
rompere no yes no Piero aveva rotto.
rompere no yes yes Paolo aveva rotto di nuovo.
rubare no no no Marta stava rubando.
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verb dObj perfective iterative sentence

rubare no no yes Maria stava rubando di nuovo.
rubare no yes no Sara aveva rubato.
rubare no yes yes Carla aveva rubato di nuovo.
scarabocchiare no no no Franco stava scarabocchiando.
scarabocchiare no no yes Paolo stava scarabocchiando di

nuovo.
scarabocchiare no yes no Marta aveva scarabocchiato.
scarabocchiare no yes yes Franco aveva scarabocchiato di

nuovo.
scrivere no no no Sara stava scrivendo.
scrivere no no yes Carla stava scrivendo di nuovo.
scrivere no yes no Giulia aveva scritto.
scrivere no yes yes Marta aveva scritto di nuovo.
sorseggiare no no no Sara stava sorseggiando.
sorseggiare no no yes Maria stava sorseggiando di

nuovo.
sorseggiare no yes no Piero aveva sorseggiato.
sorseggiare no yes yes Marta aveva sorseggiato di nuovo.
spaccare no no no Giulia stava spaccando.
spaccare no no yes Gianni stava spaccando di nuovo.
spaccare no yes no Gianni aveva spaccato.
spaccare no yes yes Marta aveva spaccato di nuovo.
tagliare no no no Marta stava tagliando.
tagliare no no yes Maria stava tagliando di nuovo.
tagliare no yes no Luca aveva tagliato.
tagliare no yes yes Piero aveva tagliato di nuovo.
trangugiare no no no Franco stava trangugiando.
trangugiare no no yes Sara stava trangugiando di nuovo.
trangugiare no yes no Giulia aveva trangugiato.
trangugiare no yes yes Sara aveva trangugiato di nuovo.
uccidere no no no Maria stava uccidendo.
uccidere no no yes Carla stava uccidendo di nuovo.
uccidere no yes no Giulia aveva ucciso.
uccidere no yes yes Giulia aveva ucciso di nuovo.
versare no no no Marta stava versando.
versare no no yes Franco stava versando di nuovo.
versare no yes no Maria aveva versato.
versare no yes yes Paolo aveva versato di nuovo.

D.2.2 Control sentences

verb dObj perfective iterative sentence

accoltellare yes no no Sara stava accoltellando un uomo.
accoltellare yes no yes Carla stava accoltellando un uomo

di nuovo.
accoltellare yes yes no Sara aveva accoltellato un uomo.
accoltellare yes yes yes Gianni aveva accoltellato un uomo

di nuovo.
affettare yes no no Paolo stava affettando una torta.
affettare yes no yes Piero stava affettando una torta di

nuovo.
affettare yes yes no Carla aveva affettato una torta.
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verb dObj perfective iterative sentence

affettare yes yes yes Piero aveva affettato una torta di
nuovo.

avvelenare yes no no Marta stava avvelenando una pi-
anta.

avvelenare yes no yes Marta stava avvelenando una pi-
anta di nuovo.

avvelenare yes yes no Carla aveva avvelenatounapianta.
avvelenare yes yes yes Carla aveva avvelenato una pianta

di nuovo.
bere yes no no Carla stava bevendo del succo.
bere yes no yes Paolo stava bevendo del succo di

nuovo.
bere yes yes no Maria aveva bevuto del succo.
bere yes yes yes Carla aveva bevuto del succo di

nuovo.
cantare yes no no Marta stava cantando un inno.
cantare yes no yes Gianni stava cantando un inno di

nuovo.
cantare yes yes no Sara aveva cantato un inno.
cantare yes yes yes Marta aveva cantato un inno di

nuovo.
canticchiare yes no no Paolo stava canticchiando una

ninna-nanna.
canticchiare yes no yes Maria stava canticchiando una

ninna-nanna di nuovo.
canticchiare yes yes no Gianni aveva canticchiato una

ninna-nanna.
canticchiare yes yes yes Franco aveva canticchiato una

ninna-nanna di nuovo.
costruire yes no no Luca stava costruendo una casa.
costruire yes no yes Marta stava costruendo una casa

di nuovo.
costruire yes yes no Luca aveva costruito una casa.
costruire yes yes yes Paolo aveva costruito una casa di

nuovo.
cucinare yes no no Maria stava cucinando la cena.
cucinare yes no yes Giulia stava cucinando la cena di

nuovo.
cucinare yes yes no Marta aveva cucinato la cena.
cucinare yes yes yes Franco aveva cucinato la cena di

nuovo.
cucire yes no no Sara stava cucendo una tenda.
cucire yes no yes Franco stava cucendo una tenda

di nuovo.
cucire yes yes no Maria aveva cucito una tenda.
cucire yes yes yes Franco aveva cucito una tenda di

nuovo.
decapitare yes no no Luca stava decapitando un pri-

gioniero.
decapitare yes no yes Luca stava decapitando un pri-

gioniero di nuovo.
decapitare yes yes no Gianni aveva decapitato un pri-

gioniero.
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verb dObj perfective iterative sentence

decapitare yes yes yes Piero aveva decapitato un prigion-
iero di nuovo.

divorare yes no no Gianni stava divorando un pollo
arrosto.

divorare yes no yes Gianni stava divorando un pollo
arrosto di nuovo.

divorare yes yes no Carla aveva divorato un pollo ar-
rosto.

divorare yes yes yes Franco aveva divorato un pollo
arrosto di nuovo.

firmare yes no no Marta stava firmando un docu-
mento.

firmare yes no yes Gianni stava firmando un docu-
mento di nuovo.

firmare yes yes no Luca avevafirmatoundocumento.
firmare yes yes yes Sara aveva firmato un documento

di nuovo.
fumare yes no no Franco stava fumando una

sigaretta.
fumare yes no yes Piero stava fumando una sigaretta

di nuovo.
fumare yes yes no Luca aveva fumato una sigaretta.
fumare yes yes yes Carla aveva fumato una sigaretta

di nuovo.
guardare yes no no Paolo stava guardando un film.
guardare yes no yes Luca stava guardando un film di

nuovo.
guardare yes yes no Giulia aveva guardato un film.
guardare yes yes yes Gianni aveva guardato un film di

nuovo.
insegnare yes no no Carla stava insegnando linguis-

tica.
insegnare yes no yes Gianni stava insegnando linguis-

tica di nuovo.
insegnare yes yes no Marta aveva insegnato linguistica.
insegnare yes yes yes Franco aveva insegnato linguistica

di nuovo.
lavare yes no no Marta stava lavando una

macchina.
lavare yes no yes Piero stava lavando una macchina

di nuovo.
lavare yes yes no Maria aveva lavato una macchina.
lavare yes yes yes Franco aveva lavato una macchina

di nuovo.
lucidare yes no no Paolo stava lucidando una spada.
lucidare yes no yes Giulia stava lucidando una spada

di nuovo.
lucidare yes yes no Franco aveva lucidato una spada.
lucidare yes yes yes Piero aveva lucidato una spada di

nuovo.
mangiare yes no no Paolo stava mangiando della

pizza.
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verb dObj perfective iterative sentence

mangiare yes no yes Marta stava mangiando della
pizza di nuovo.

mangiare yes yes no Luca aveva mangiato della pizza.
mangiare yes yes yes Gianni avevamangiato della pizza

di nuovo.
pulire yes no no Carla stava pulendo un tavolo.
pulire yes no yes Gianni stava pulendo un tavolo di

nuovo.
pulire yes yes no Giulia aveva pulito un tavolo.
pulire yes yes yes Sara aveva pulito un tavolo di

nuovo.
ricamare yes no no Paolo stava ricamando un arazzo.
ricamare yes no yes Paolo stava ricamando un arazzo

di nuovo.
ricamare yes yes no Luca aveva ricamato un arazzo.
ricamare yes yes yes Franco aveva ricamato un arazzo

di nuovo.
rompere yes no no Piero stava rompendo un vaso.
rompere yes no yes Marta stava rompendo un vaso di

nuovo.
rompere yes yes no Sara aveva rotto un vaso.
rompere yes yes yes Giulia aveva rotto un vaso di

nuovo.
rubare yes no no Paolo stava rubando dei soldi.
rubare yes no yes Paolo stava rubando dei soldi di

nuovo.
rubare yes yes no Piero aveva rubato dei soldi.
rubare yes yes yes Marta aveva rubato dei soldi di

nuovo.
scarabocchiare yes no no Luca stava scarabocchiando un

omino.
scarabocchiare yes no yes Giulia stava scarabocchiando un

omino di nuovo.
scarabocchiare yes yes no Franco aveva scarabocchiato un

omino.
scarabocchiare yes yes yes Gianni aveva scarabocchiato un

omino di nuovo.
scrivere yes no no Luca stava scrivendo una lettera.
scrivere yes no yes Giulia stava scrivendo una lettera

di nuovo.
scrivere yes yes no Sara aveva scritto una lettera.
scrivere yes yes yes Sara aveva scritto una lettera di

nuovo.
sorseggiare yes no no Giulia stava sorseggiando

dell’acqua.
sorseggiare yes no yes Franco stava sorseggiando

dell’acqua di nuovo.
sorseggiare yes yes no Gianni aveva sorseggiato

dell’acqua.
sorseggiare yes yes yes Luca aveva sorseggiato dell’acqua

di nuovo.
spaccare yes no no Luca stava spaccando un tronco.
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verb dObj perfective iterative sentence

spaccare yes no yes Maria stava spaccando un tronco
di nuovo.

spaccare yes yes no Carla aveva spaccato un tronco.
spaccare yes yes yes Carla aveva spaccato un tronco di

nuovo.
tagliare yes no no Paolo stava tagliando della carta.
tagliare yes no yes Sara stava tagliando della carta di

nuovo.
tagliare yes yes no Piero aveva tagliato della carta.
tagliare yes yes yes Luca aveva tagliato della carta di

nuovo.
trangugiare yes no no Luca stava trangugiando una

birra.
trangugiare yes no yes Sara stava trangugiando una birra

di nuovo.
trangugiare yes yes no Carla aveva trangugiato una birra.
trangugiare yes yes yes Sara aveva trangugiato una birra

di nuovo.
uccidere yes no no Marta stava uccidendo dei paras-

siti.
uccidere yes no yes Carla stavauccidendodei parassiti

di nuovo.
uccidere yes yes no Luca aveva ucciso dei parassiti.
uccidere yes yes yes Sara aveva ucciso dei parassiti di

nuovo.
versare yes no no Sara stava versando del vino.
versare yes no yes Carla stava versando del vino di

nuovo.
versare yes yes no Maria aveva versato del vino.
versare yes yes yes Carla aveva versato del vino di

nuovo.

D.2.3 Filler sentences

verb dObj perfective iterative sentence

applaudire no no no Sara stava applaudendo.
applaudire no no yes Carla stava applaudendo di

nuovo.
applaudire no yes no Paolo aveva applaudito.
applaudire no yes yes Piero aveva applaudito di nuovo.
applaudire yes no no Giulia stava applaudendo uno

spettacolo.
applaudire yes no yes Marta stava applaudendo uno

spettacolo di nuovo.
applaudire yes yes no Marta aveva applaudito uno spet-

tacolo.
applaudire yes yes yes Marta aveva applaudito uno spet-

tacolo di nuovo.
barcollare no no no Giulia stava barcollando.
barcollare no no yes Maria stava barcollando di nuovo.
barcollare no yes no Giulia aveva barcollato.
barcollare no yes yes Giulia aveva barcollato di nuovo.
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verb dObj perfective iterative sentence

barcollare yes no no Giulia stava barcollando il marci-
apiede.

barcollare yes no yes Marta stava barcollando il marci-
apiede di nuovo.

barcollare yes yes no Maria aveva barcollato il marci-
apiede.

barcollare yes yes yes Paolo aveva barcollato il marci-
apiede di nuovo.

bussare no no no Giulia stava bussando.
bussare no no yes Luca stava bussando di nuovo.
bussare no yes no Gianni aveva bussato.
bussare no yes yes Franco aveva bussato di nuovo.
bussare yes no no Piero stava bussando una porta.
bussare yes no yes Piero stava bussando una porta di

nuovo.
bussare yes yes no Franco aveva bussato una porta.
bussare yes yes yes Paolo aveva bussato una porta di

nuovo.
digiunare no no no Paolo stava digiunando.
digiunare no no yes Gianni stavadigiunandodi nuovo.
digiunare no yes no Maria aveva digiunato.
digiunare no yes yes Piero aveva digiunato di nuovo.
digiunare yes no no Giulia stava digiunando del sushi.
digiunare yes no yes Sara stava digiunando del sushi di

nuovo.
digiunare yes yes no Marta aveva digiunato del sushi.
digiunare yes yes yes Marta aveva digiunato del sushi

di nuovo.
dormire no no no Piero stava dormendo.
dormire no no yes Maria stava dormendo di nuovo.
dormire no yes no Piero aveva dormito.
dormire no yes yes Carla aveva dormito di nuovo.
dormire yes no no Sara stava dormendo un cuscino.
dormire yes no yes Luca stava dormendo un cuscino

di nuovo.
dormire yes yes no Giulia aveva dormito un cuscino.
dormire yes yes yes Carla aveva dormito un cuscino di

nuovo.
ridere no no no Sara stava ridendo.
ridere no no yes Piero stava ridendo di nuovo.
ridere no yes no Sara aveva riso.
ridere no yes yes Paolo aveva riso di nuovo.
ridere yes no no Luca stava ridendo una barzel-

letta.
ridere yes no yes Giulia stava ridendo una barzel-

letta di nuovo.
ridere yes yes no Marta aveva riso una barzelletta.
ridere yes yes yes Giulia aveva riso una barzelletta

di nuovo.
riposarsi no no no Luca si stava riposando.
riposarsi no no yes Gianni si stava riposando di

nuovo.
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verb dObj perfective iterative sentence

riposarsi no yes no Piero si è riposato.
riposarsi no yes yes Sara si è riposata di nuovo.
riposarsi yes no no Luca si stava riposando un letto.
riposarsi yes no yes Maria si stava riposando un letto

di nuovo.
riposarsi yes yes no Piero si è riposato un letto.
riposarsi yes yes yes Luca si è riposato un letto di

nuovo.
sorridere no no no Sara stava sorridendo.
sorridere no no yes Carla stava sorridendo di nuovo.
sorridere no yes no Paolo aveva sorriso.
sorridere no yes yes Maria aveva sorriso di nuovo.
sorridere yes no no Carla stava sorridendo un amico.
sorridere yes no yes Giulia stava sorridendo un amico

di nuovo.
sorridere yes yes no Gianni aveva sorriso un amico.
sorridere yes yes yes Sara aveva sorriso un amico di

nuovo.
urlare no no no Sara stava urlando.
urlare no no yes Franco stava urlando di nuovo.
urlare no yes no Luca aveva urlato.
urlare no yes yes Marta aveva urlato di nuovo.
urlare yes no no Gianni stava urlando un ragno.
urlare yes no yes Carla stava urlando un ragno di

nuovo.
urlare yes yes no Paolo aveva urlato un ragno.
urlare yes yes yes Gianni aveva urlato un ragno di

nuovo.
zoppicare no no no Luca stava zoppicando.
zoppicare no no yes Maria stava zoppicando di nuovo.
zoppicare no yes no Paolo aveva zoppicato.
zoppicare no yes yes Piero aveva zoppicato di nuovo.
zoppicare yes no no Luca stava zoppicando una strada.
zoppicare yes no yes Paolo stava zoppicandouna strada

di nuovo.
zoppicare yes yes no Maria aveva zoppicato una strada.
zoppicare yes yes yes Sara aveva zoppicato una strada

di nuovo.
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This appendix collects all the 18 models of the indefinite object construc-
tion that I computed for this dissertation, as detailed in Section 9.1.1.
The interested reader can browse my GitHub profile to find both the raw
data∗ and the Python scripts† I used to compute these results.

E.1 English

E.1.1 Basic model

Figure E.1: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Resnik’s SPS
(English basic model).
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Figure E.2: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Resnik’s SPS (English basic
model).
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∗ https://github.com/giuliacappelli/dissertationData
† https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory
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Figure E.3: Probability of *Int Arg be-
ing ranked above each of the other con-
straints, varying in accordance with Com-
putational PISA (English basic model).
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Figure E.4: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Computational PISA (English
basic model).
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Figure E.5: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Behavioral
PISA (English basic model).
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Figure E.6: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Behavioral PISA (English basic
model).
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E.1.2 Intermediate model
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Figure E.7: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Resnik’s SPS
(English intermediate model).
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Figure E.8: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Resnik’s SPS (English interme-
diate model).
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Figure E.9: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Computa-
tional PISA (English intermediate model).
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Figure E.10: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Computational PISA (English
intermediate model).
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Figure E.11: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Behavioral
PISA (English intermediate model).
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Figure E.12: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Behavioral PISA (English in-
termediate model).
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E.1.3 Full model
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Figure E.13: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Resnik’s SPS
(English full model).
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Figure E.14: Probability of an implicit ob-
ject output for each aspectual type, as
a function of Resnik’s SPS (English full
model).
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Figure E.15: Probability of *Int Arg be-
ing ranked above each of the other con-
straints, varying in accordance with Com-
putational PISA (English full model).
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Figure E.16: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Computational PISA (English
full model).
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Figure E.17: Probability of *Int Arg be-
ing ranked above each of the other con-
straints, varying in accordance with Be-
havioral PISA (English full model).
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Figure E.18: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Behavioral PISA (English full
model).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Behavioral PISA

pr
ob

ab
ili
ty

of
im

pl
ic
it
ob

je
ct

ou
tp
ut

t+ p+ i+ ms+
t+ p- i+ ms+
t- p+ i+ ms+
t- p- i+ ms+
t+ p+ i- ms+
t+ p- i- ms+
t- p+ i- ms+
t- p- i- ms+
t+ p+ i+ ms-
t+ p- i+ ms-
t- p+ i+ ms-
t- p- i+ ms-
t+ p+ i- ms-
t+ p- i- ms-
t- p+ i- ms-
t- p- i- ms-



E.2 Italian 219

E.2 Italian

E.2.1 Basic model
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Figure E.19: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Resnik’s SPS
(Italian basic model).
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Figure E.20: Probability of an implicit ob-
ject output for each aspectual type, as
a function of Resnik’s SPS (Italian basic
model).
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Figure E.21: Probability of *Int Arg be-
ing ranked above each of the other con-
straints, varying in accordance with Com-
putational PISA (Italian basic model).
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Figure E.22: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Computational PISA (Italian
basic model).
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Figure E.23: Probability of *Int Arg be-
ing ranked above each of the other con-
straints, varying in accordance with Be-
havioral PISA (Italian basic model).
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E.2.2 Intermediate model

Figure E.25: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Resnik’s SPS
(Italian intermediate model).
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Figure E.26: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Resnik’s SPS (Italian interme-
diate model).
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Figure E.27: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Computa-
tional PISA (Italian intermediate model).
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Figure E.28: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Computational PISA (Italian
intermediate model).
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Figure E.29: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Behavioral
PISA (Italian intermediate model).
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Figure E.30: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Behavioral PISA (Italian inter-
mediate model).
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E.2.3 Full model

Figure E.31: Probability of *Int Arg being
ranked above each of the other constraints,
varying in accordance with Resnik’s SPS
(Italian full model).
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Figure E.32: Probability of an implicit ob-
ject output for each aspectual type, as
a function of Resnik’s SPS (Italian full
model).
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Figure E.33: Probability of *Int Arg be-
ing ranked above each of the other con-
straints, varying in accordance with Com-
putational PISA (Italian full model).
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Figure E.34: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Computational PISA (Italian
full model).
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Figure E.35: Probability of *Int Arg be-
ing ranked above each of the other con-
straints, varying in accordance with Be-
havioral PISA (Italian full model).
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Figure E.36: Probability of an implicit ob-
ject output for each aspectual type, as a
function of Behavioral PISA (Italian full
model).
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1: https://github.com/giuliacappelli/
dissertationData

2: https://github.com/giuliacappelli/
MedinaStochasticOptimalityTheory

Squared errors: distance between

actual judgments and values

predicted by the model F
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This appendix collects the actual acceptability judgments provided by
human participants, the values predicted by my Stochastic Optimality
Theoretic model (in the full version using Behavioral PISA, as explained
in full in Chapter 9), and the squared error for each sentence in the set of
stimuli for English and Italian (which the interested reader can peruse in
Appendix D).
These data are also available here on my GitHub profile1 , while the
Python scripts I wrote to analyse the results and create a Stochastic
Optimality Theoretic model of object drop are available on my Github
profile2 in another dedicated repository.

F.1 English

verb actual predicted squared error

behead 0.251 0.444 0.037
behead 0.507 0.475 0.001
behead 0.155 0.363 0.043
behead 0.567 0.389 0.032
break 0.050 0.445 0.156
break 0.038 0.480 0.195
break 0.000 0.360 0.130
break 0.039 0.388 0.122
build 0.616 0.551 0.004
build 0.883 0.584 0.089
build 0.124 0.457 0.111
build 0.450 0.485 0.001
chop 0.768 0.541 0.052
chop 0.850 0.571 0.078
chop 0.447 0.452 0.000
chop 0.629 0.477 0.023
clean 0.994 0.852 0.020
clean 0.994 0.914 0.006
clean 0.893 0.694 0.039
clean 0.910 0.745 0.027
cook 0.994 0.889 0.011
cook 0.995 0.937 0.003
cook 0.926 0.746 0.032
cook 0.915 0.786 0.017
cut 0.744 0.889 0.021
cut 0.678 0.937 0.067
cut 0.286 0.745 0.211
cut 0.519 0.785 0.071
devour 0.133 0.429 0.087
devour 0.217 0.460 0.059
devour 0.064 0.349 0.081

https://github.com/giuliacappelli/dissertationData
https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory
https://github.com/giuliacappelli/MedinaStochasticOptimalityTheory
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verb actual predicted squared error

devour 0.057 0.375 0.101
doodle 0.984 0.803 0.033
doodle 0.975 0.852 0.015
doodle 0.951 0.666 0.081
doodle 0.930 0.707 0.050
drink 0.967 0.931 0.001
drink 0.977 0.961 0.000
drink 0.461 0.805 0.119
drink 0.766 0.831 0.004
eat 0.994 0.916 0.006
eat 1.000 0.953 0.002
eat 0.984 0.784 0.040
eat 0.976 0.815 0.026
embroider 0.959 0.835 0.015
embroider 0.930 0.877 0.003
embroider 0.836 0.704 0.018
embroider 0.765 0.739 0.001
hum 0.987 0.829 0.025
hum 0.985 0.872 0.013
hum 0.923 0.696 0.051
hum 0.874 0.733 0.020
kill 0.549 0.641 0.008
kill 0.830 0.671 0.025
kill 0.835 0.543 0.086
kill 0.939 0.568 0.138
knife 0.240 0.467 0.051
knife 0.225 0.498 0.075
knife 0.124 0.384 0.068
knife 0.304 0.410 0.011
poison 0.316 0.419 0.011
poison 0.479 0.451 0.001
poison 0.250 0.341 0.008
poison 0.572 0.367 0.042
polish 0.795 0.803 0.000
polish 0.830 0.852 0.000
polish 0.660 0.666 0.000
polish 0.454 0.707 0.064
pour 0.562 0.888 0.106
pour 0.527 0.936 0.167
pour 0.493 0.743 0.063
pour 0.463 0.784 0.103
sew 0.994 0.897 0.009
sew 0.952 0.941 0.000
sew 0.761 0.756 0.000
sew 0.821 0.794 0.001
sign 0.743 0.767 0.001
sign 0.759 0.787 0.001
sign 0.706 0.669 0.001
sign 0.679 0.687 0.000
sing 1.000 0.999 0.000
sing 0.993 1.000 0.000
sing 0.910 0.903 0.000
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verb actual predicted squared error

sing 0.935 0.904 0.001
sip 0.699 0.864 0.027
sip 0.693 0.899 0.042
sip 0.426 0.737 0.097
sip 0.588 0.768 0.032
slice 0.740 0.591 0.022
slice 0.616 0.620 0.000
slice 0.457 0.499 0.002
slice 0.495 0.523 0.001
smoke 0.987 0.953 0.001
smoke 0.992 0.974 0.000
smoke 0.924 0.836 0.008
smoke 0.894 0.854 0.002
steal 0.927 0.407 0.270
steal 0.962 0.442 0.270
steal 0.830 0.327 0.253
steal 0.945 0.355 0.348
swig 0.536 0.508 0.001
swig 0.531 0.539 0.000
swig 0.431 0.422 0.000
swig 0.485 0.447 0.001
teach 0.994 0.931 0.004
teach 0.994 0.961 0.001
teach 0.700 0.805 0.011
teach 0.839 0.831 0.000
wash 0.859 0.856 0.000
wash 0.882 0.893 0.000
wash 0.842 0.728 0.013
wash 0.855 0.760 0.009
watch 0.903 0.843 0.004
watch 0.795 0.909 0.013
watch 0.738 0.682 0.003
watch 0.599 0.736 0.019
write 0.990 0.929 0.004
write 1.000 0.960 0.002
write 0.839 0.802 0.001
write 0.941 0.829 0.013

F.2 Italian

verb actual predicted squared error

accoltellare 0.211 0.414 0.041
accoltellare 0.445 0.424 0.000
accoltellare 0.337 0.345 0.000
accoltellare 0.358 0.353 0.000
affettare 0.537 0.421 0.013
affettare 0.493 0.430 0.004
affettare 0.227 0.355 0.016
affettare 0.431 0.362 0.005
avvelenare 0.138 0.385 0.061
avvelenare 0.210 0.399 0.036
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verb actual predicted squared error

avvelenare 0.013 0.311 0.088
avvelenare 0.243 0.322 0.006
bere 0.916 0.892 0.001
bere 0.939 0.892 0.002
bere 0.933 0.798 0.018
bere 0.876 0.798 0.006
cantare 0.959 0.889 0.005
cantare 0.942 0.890 0.003
cantare 0.868 0.795 0.005
cantare 0.785 0.795 0.000
canticchiare 0.890 0.681 0.044
canticchiare 0.915 0.693 0.049
canticchiare 0.843 0.580 0.069
canticchiare 0.825 0.590 0.055
costruire 0.555 0.582 0.001
costruire 0.564 0.602 0.001
costruire 0.422 0.474 0.003
costruire 0.418 0.489 0.005
cucinare 0.919 0.866 0.003
cucinare 0.928 0.872 0.003
cucinare 0.926 0.762 0.027
cucinare 0.835 0.767 0.005
cucire 0.878 0.816 0.004
cucire 0.901 0.831 0.005
cucire 0.771 0.691 0.006
cucire 0.598 0.704 0.011
decapitare 0.155 0.410 0.065
decapitare 0.294 0.421 0.016
decapitare 0.155 0.340 0.034
decapitare 0.040 0.349 0.095
divorare 0.103 0.424 0.103
divorare 0.223 0.432 0.044
divorare 0.000 0.359 0.129
divorare 0.007 0.366 0.128
firmare 0.747 0.428 0.102
firmare 0.760 0.434 0.106
firmare 0.789 0.365 0.179
firmare 0.687 0.371 0.099
fumare 0.966 0.857 0.012
fumare 0.887 0.864 0.001
fumare 0.855 0.749 0.011
fumare 0.954 0.755 0.039
guardare 0.613 0.747 0.018
guardare 0.660 0.775 0.013
guardare 0.523 0.600 0.006
guardare 0.549 0.623 0.005
insegnare 0.853 0.830 0.001
insegnare 0.827 0.842 0.000
insegnare 0.545 0.711 0.028
insegnare 0.503 0.721 0.048
lavare 0.818 0.659 0.025
lavare 0.661 0.672 0.000
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verb actual predicted squared error

lavare 0.650 0.558 0.008
lavare 0.575 0.569 0.000
lucidare 0.657 0.546 0.012
lucidare 0.658 0.562 0.009
lucidare 0.509 0.448 0.004
lucidare 0.415 0.462 0.002
mangiare 0.912 0.862 0.002
mangiare 0.934 0.868 0.004
mangiare 0.876 0.755 0.015
mangiare 0.832 0.761 0.005
pulire 0.913 0.829 0.007
pulire 0.892 0.841 0.003
pulire 0.853 0.709 0.021
pulire 0.873 0.720 0.023
ricamare 0.880 0.663 0.047
ricamare 0.784 0.676 0.012
ricamare 0.805 0.563 0.059
ricamare 0.756 0.573 0.033
rompere 0.450 0.502 0.003
rompere 0.391 0.510 0.014
rompere 0.419 0.431 0.000
rompere 0.372 0.437 0.004
rubare 0.888 0.598 0.084
rubare 0.859 0.620 0.057
rubare 0.850 0.480 0.137
rubare 0.892 0.498 0.155
scarabocchiare 0.820 0.620 0.040
scarabocchiare 0.828 0.634 0.038
scarabocchiare 0.710 0.520 0.036
scarabocchiare 0.719 0.532 0.035
scrivere 0.895 0.877 0.000
scrivere 0.853 0.880 0.001
scrivere 0.661 0.777 0.013
scrivere 0.842 0.779 0.004
sorseggiare 0.640 0.707 0.005
sorseggiare 0.559 0.718 0.025
sorseggiare 0.378 0.606 0.052
sorseggiare 0.521 0.616 0.009
spaccare 0.378 0.399 0.000
spaccare 0.262 0.412 0.022
spaccare 0.157 0.327 0.029
spaccare 0.281 0.337 0.003
tagliare 0.563 0.807 0.059
tagliare 0.579 0.824 0.060
tagliare 0.408 0.679 0.074
tagliare 0.461 0.694 0.054
trangugiare 0.357 0.419 0.004
trangugiare 0.438 0.428 0.000
trangugiare 0.229 0.351 0.015
trangugiare 0.349 0.359 0.000
uccidere 0.593 0.534 0.003
uccidere 0.679 0.546 0.018
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verb actual predicted squared error

uccidere 0.604 0.449 0.024
uccidere 0.754 0.459 0.087
versare 0.299 0.859 0.313
versare 0.432 0.866 0.188
versare 0.165 0.751 0.343
versare 0.183 0.757 0.330



References





References

A

Abe, Naoki and Hang Li (1996). Learning Word Association Norms Using
Tree Cut Pair Models. arXiv: cmp-lg/9605029 (cited on page 92).

Ahringberg, Johanna (2015). ‘”We Come up All This Way to Visit” A
Case Study of Null Instantiation in English with the Verbs Visit and
Destroy’. Term Paper. Lund University (cited on pages 14, 18, 23, 48).

Alatrash, Reem, Dominik Schlechtweg, Jonas Kuhn, and Sabine Schulte
Im Walde (2020). ‘CCOHA: Clean Corpus Of Historical American
English’. In: Proceedings of The 12th Language Resources and Evaluation
Conference, pp. 6958–6966 (cited on page 171).

Aldezabal, Izaskun, Koldo Gojenola, Kepa Sarasola, Aitziber Atutxa,
et al. (2003). ‘Learning argument/adjunct distinction for Basque’. In:
Anuario del Seminario de Filologıa Vasca "Julio de Urquĳo", pp. 75–93. doi:
10.1387/asju.9711 (cited on page 63).

Alexopoulou, Theodora and Frank Keller (2006). ‘Gradience and Para-
metric Variation’. In: ExLing 2006: 1st Tutorial and Research Workshop on
Experimental Linguistics, pp. 69–72 (cited on pages 62, 63).

Alishahi, Afra and Suzanne Stevenson (2007). ‘A Cognitive Model for the
Representation and Acquisition of Verb Selectional Preferences’. In:
Proceedings of theWorkshop onCognitive Aspects of Computational Language
Acquisition. Prague, Czech Republic: Association for Computational
Linguistics, pp. 41–48 (cited on page 92).

Allen, Shanley E. M. (2000). ‘A discourse-pragmatic explanation for
argument representation in child Inuktitut’. In: Linguistics 38.3, pp. 483–
521. doi: 10.1515/ling.38.3.483 (cited on page 31).

Allerton, David J. (1975). ‘Deletion and Proform Reduction’. In: Journal of
Linguistics 11.2, pp. 213–237. doi: 10.1017/S0022226700004540 (cited
on pages 11, 12, 40, 49).

Almeida, Francisco Alonso (2009). ‘Null Objects in Middle English
Medical Texts’. In: Textual Healing: Studies in Medieval English Medical,
Scientific and Technical Texts. Ed. by Javier E. Díaz-Vera and Rosario
Caballero. Peter Lang, pp. 1–27 (cited on page 14).

Amberber, Mengistu (1996). ‘Transitivity Alternations, Event-Types and
Light Verbs’. PhD thesis. McGill University (cited on page 26).

– (2009). ‘Quirky Alternation of Transitivity: The Case of Ingestive
Predicates’. In: The Linguistics of Eating and Drinking. John Benjamins
Publishing (cited on page 26).

AnderBois, Scott (2012). ‘Indefiniteness and the Typology of Implicit
Arguments’. In: Proceedings of the 30th West Coast Conference on Formal
Linguistics. Somerville, MA: Cascadilla Proceedings Project, pp. 43–53
(cited on pages 12, 15).

Antinucci, Francesco and Ruth Miller (1976). ‘How children talk about
what happened’. In: Journal of child language 3.2, pp. 167–189 (cited on
page 44).

Armstrong,GrantWarren (2011). ‘Two classes of transitive verbs: Evidence
from Spanish’. PhD thesis. Georgetown University (cited on page 17).

https://arxiv.org/abs/cmp-lg/9605029
https://doi.org/10.1387/asju.9711
https://doi.org/10.1515/ling.38.3.483
https://doi.org/10.1017/S0022226700004540


236 References

Arunachalam, Sudha (2013). ‘Experimental methods for linguists’. In:
Language and Linguistics Compass 7.4, pp. 221–232 (cited on page 106).

B

Bach, Emmon (1986). ‘The algebra of events’. In: Linguistics and philosophy
9.1, pp. 5–16 (cited on page 71).

Bader, Markus and Jana Häussler (2010). ‘Toward a Model of Gram-
maticality Judgments’. In: Journal of Linguistics 46.2, pp. 273–330. doi:
10.1017/S0022226709990260 (cited on pages 62, 169).

Baker, Mark (1988). ‘Theta theory and the syntax of applicatives in
Chichewa’. In: Natural Language & Linguistic Theory 6.3, pp. 353–389
(cited on page 24).

Bard, Ellen Gurman, Dan Robertson, andAntonella Sorace (1996). ‘Magni-
tude estimation of linguistic acceptability’. In: Language 72.1, pp. 32–68.
doi: 10.2307/416793 (cited on pages 60, 106).

Baroni, Marco, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta
(2009). ‘The WaCky wide web: a collection of very large linguistically
processed web-crawled corpora’. In: Language resources and evaluation
43.3, pp. 209–226. doi: 10.1007/s10579- 009- 9081- 4 (cited on
pages 96, 107).

Basile, Pierpaolo, Annalina Caputo, Tommaso Caselli, Pierluigi Cassotti,
and Rossella Varvara (2020). ‘A Diachronic Italian Corpus based on"
L’Unità"’. In: Proceedings of the 7th Italian Conference on Computational
Linguistics, CLiC-it 2020. Ed. by Felice Dell’Orletta, Johanna Monti,
and Fabio Tamburini. Collana dell’Associazione Italiana di Linguistica
Computazionale. Torino: Accademia University Press, pp. 31–36. doi:
10.4000/books.aaccademia.8203 (cited on pages 171, 172).

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker (2015).
‘Fitting Linear Mixed-Effects Models Using lme4’. In: Journal of Statis-
tical Software 67.1, pp. 1–48. doi: 10.18637/jss.v067.i01 (cited on
pages 121, 161).

Beavers, John (2013). ‘Aspectual Classes and Scales of Change’. In: Lin-
guistics 51.4. doi: 10.1515/ling-2013-0024 (cited on page 34).

Beavers, John and Andrew Koontz-Garboden (2012). ‘Manner and Result
in the Roots of Verbal Meaning’. In: Linguistic Inquiry 43.3, pp. 331–369
(cited on pages 34, 35).

– (2017). ‘Result Verbs, Scalar Change, and the Typology ofMotion Verbs’.
In: Language 93.4, pp. 842–876. doi: 10.1353/lan.2017.0060 (cited on
page 34).

Beavers, John, Beth Levin, and Shiao Wei Tham (2010). ‘The Typology of
Motion Expressions Revisited’. In: Journal of Linguistics 46.2, pp. 331–
377. doi: 10.1017/S0022226709990272 (cited on page 34).

Beckwith, Richard, Christiane Fellbaum, Derek Gross, and George A.
Miller (1991). ‘WordNet: A lexical database organized on psycholin-
guistic principles’. In: Lexical acquisition: Exploiting on-line resources to
build a lexicon 211 (cited on pages 68, 91).

Bellik, Jennifer and Nick Kalivoda (2019). ‘Automated tableau generation
using SPOT (Syntax Prosody in Optimality Theory)’. In: Linguistics
Vanguard 5.1 (cited on page 53).

https://doi.org/10.1017/S0022226709990260
https://doi.org/10.2307/416793
https://doi.org/10.1007/s10579-009-9081-4
https://doi.org/10.4000/books.aaccademia.8203
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1515/ling-2013-0024
https://doi.org/10.1353/lan.2017.0060
https://doi.org/10.1017/S0022226709990272


References 237

Bender, Emily (1999). ‘Constituting Context: Null Objects in English
Recipes Revisited’. In: University of Pennsylvania Working Papers in
Linguistics 6.1 (cited on page 14).

Bergh, Gunnar and Sölve Ohlander (2016). ‘Iniesta Passed and Messi
Finished Clinically: Football Verbs and Transitivity’. In: Nordic Journal
of English Studies 15.2, p. 19. doi: 10.35360/njes.359 (cited on pages 14,
15, 31).

Bergsma, Shane, Dekang Lin, and Randy Goebel (2008). ‘Discriminative
Learning of Selectional Preference from Unlabeled Text’. In: Proceed-
ings of the 2008 Conference on Empirical Methods in Natural Language
Processing. EMNLP 2008. Honolulu, Hawaii: Association for Computa-
tional Linguistics, pp. 59–68. doi: 10.5555/1613715.1613725 (cited
on page 92).

Bermel, Neil and Luděk Knittl (2012). ‘Corpus Frequency and Accept-
ability Judgments: A Study of Morphosyntactic Variants in Czech’. In:
Corpus Linguistics and Linguistic Theory 8.2, pp. 241–275. doi: 10.1515/
cllt-2012-0010 (cited on page 169).

Bertinetto, Pier Marco (1992). ‘Le strutture tempo-aspettuali dell’italiano
e dell’inglese’. In: L’Europa linguistica: contatti, contrasti, e affinità di
lingue. Ed. by Antonia G. Mocciaro and Giulio Soravia. Roma: Bulzoni,
pp. 49–68 (cited on page 103).

– (2001). ‘On a frequent misunderstanding in the temporal-aspectual do-
main: The ’perfective-telic confusion’’. In: Semantic Interfaces: Reference,
Anaphora and Aspect, Stanford: CSLI Publications, pp. 177–210 (cited on
pages 44, 102, 173).

Bertinetto, Pier Marco and Denis Delfitto (2000). ‘Aspect vs. Actionality:
Why they should be kept apart’. In: Empirical approaches to language
typology 6, pp. 189–226 (cited on pages 44, 100, 173).

Bertinetto, Pier Marco, Eva Maria Freiberger, Alessandro Lenci, Sabrina
Noccetti, and Maddalena Agonigi (2015). ‘The acquisition of tense
and aspect in a morphology-sensitive framework: Data from Italian
and Austrian-German children’. In: Linguistics 53.5, pp. 1113–1168. doi:
10.1515/ling-2015-0030 (cited on page 45).

Bertinetto, Pier Marco and Alessandro Lenci (2012). ‘Habituality, plurac-
tionality and imperfectivity’. In: Oxford Handbook of Tense and Aspect.
Ed. by Robert I. Binnick. Oxford: Oxford University Press, pp. 852–880.
doi: 10.1093/oxfordhb/9780195381979.013.0030 (cited on page 47).

Bertinetto, Pier Marco and Anna Lentovskaya (2012). ‘A diachronic view
of the actional/aspectual properties of Russian verbs’. In: Russian
linguistics 36.1, pp. 1–19 (cited on page 173).

Bertinetto, Pier Marco, Clémentine Talaato Pacmogda, and Alessandro
Lenci (2021). ‘On the acquisition of verbal tenses in Mòoré (Gur): a
morphology-based approach’. In: Lingue e linguaggio 20.1, pp. 111–160.
doi: 10.1418/101115 (cited on page 45).

Bertinetto, Pier Marco and Mario Squartini (1996). ‘La distribuzione del
Perfetto Semplice e del Perfetto Composto nelle diverse varietà di
italiano’. In: Romance Philology 49.4, pp. 383–419 (cited on page 103).

Bhatt, Rajesh and Roumyana Pancheva (2017). ‘Implicit arguments’. In:
The Wiley Blackwell Companion to Syntax, Second Edition, pp. 1–35 (cited
on page 170).

Bod, Rens, Jennifer Hay, and Stefanie Jannedy (2003). Probabilistic Lin-
guistics. Mit Press (cited on page 62).

https://doi.org/10.35360/njes.359
https://doi.org/10.5555/1613715.1613725
https://doi.org/10.1515/cllt-2012-0010
https://doi.org/10.1515/cllt-2012-0010
https://doi.org/10.1515/ling-2015-0030
https://doi.org/10.1093/oxfordhb/9780195381979.013.0030
https://doi.org/10.1418/101115


238 References

Boersma, Paul (2004). A Stochastic OT Account of Paralinguistic Tasks Such
as Grammaticality and Prototypicality Judgments (cited on pages 63, 168,
169).

Boersma, Paul et al. (1997). ‘How we learn variation, optionality, and
probability’. In: Proceedings of the Institute of Phonetic Sciences of the
University of Amsterdam. Vol. 21, pp. 43–58 (cited on pages 63, 64).

Boersma, Paul and Bruce Hayes (2001). ‘Empirical tests of the gradual
learning algorithm’. In: Linguistic inquiry 32.1, pp. 45–86 (cited on
pages 63–65, 168).

Borik, Olga (2006). ‘Main Theories of Aspect (I): The Telicity Approach’.
In: Aspect and Reference Time. Oxford University Press. doi: 10.1093/
acprof:oso/9780199291298.001.0001 (cited on page 101).

Bornkessel-Schlesewsky, Ina andMatthias Schlesewsky (2007). ‘The Wolf
in Sheep’s Clothing: Against a New Judgement-Driven Imperialism’.
In: Theoretical Linguistics 33.3. doi: 10.1515/TL.2007.021 (cited on
pages 60, 62).

Bourmayan, Anouch and François Recanati (2013). ‘Transitive Mean-
ings for Intransitive Verbs’. In: Brevity. Ed. by Laurence Goldstein.
Oxford University Press, pp. 122–142. doi: 10.1093/acprof:oso/
9780199664986.003.0008 (cited on pages 10, 21, 23).

Brehm, Laurel and Matthew Goldrick (2017). ‘Distinguishing Discrete
and Gradient Category Structure in Language: Insights from Verb-
Particle Constructions.’ In: Journal of Experimental Psychology: Learning,
Memory, and Cognition 43.10, pp. 1537–1556. doi: 10.1037/xlm0000390
(cited on page 62).

Bresnan, Joan (1978). ‘A realistic transformational grammar’. In: Linguistic
theory and psychological reality. Ed. by Morris Halle, Joan Bresnan, and
George A. Miller. Cambridge, MA: MIT Press, pp. 1–59 (cited on
page 19).

Bresnan, Joan, Sam Featherston, and Wolfgang Sternefeld (2007). ‘Is
syntactic knowledge probabilistic? Experimentswith the English dative
alternation’. In: Roots: Linguistics in search of its evidential base 96, pp. 77–
96 (cited on page 62).

Bresnan, Joan and Jennifer Hay (2008). ‘Gradient Grammar: An Effect of
Animacy on the Syntax of Give inNewZealand andAmerican English’.
In: Lingua 118.2, pp. 245–259. doi: 10.1016/j.lingua.2007.02.007
(cited on page 62).

Bresnan, Joan and Tatiana Nikitina (2008). ‘The gradience of the dative
alternation’. In: Reality exploration and discovery: Pattern interaction in
language and life, pp. 161–184 (cited on page 62).

Brisson, Christine (1994). ‘The licensing of unexpressed objects in English
verbs’. In: 28th Regional Meeting of the Chicago Linguistic Society (CLS).
Vol. 1, pp. 90–102 (cited on page 21).

Brockmann, Carsten and Mirella Lapata (2003). ‘Evaluating and Combin-
ing Approaches to Selectional Preference Acquisition’. In: Proceedings
of the Tenth Conference on European Chapter of the Association for Computa-
tional Linguistics - EACL ’03. Vol. 1. Budapest, Hungary: Association
for Computational Linguistics, p. 27. doi: 10.3115/1067807.1067813
(cited on page 92).

Bross, Fabian (2019). Acceptability ratings in linguistics: a practical guide to
grammaticality judgments, data collection, and statistical analysis (cited on
page 121).

https://doi.org/10.1093/acprof:oso/9780199291298.001.0001
https://doi.org/10.1093/acprof:oso/9780199291298.001.0001
https://doi.org/10.1515/TL.2007.021
https://doi.org/10.1093/acprof:oso/9780199664986.003.0008
https://doi.org/10.1093/acprof:oso/9780199664986.003.0008
https://doi.org/10.1037/xlm0000390
https://doi.org/10.1016/j.lingua.2007.02.007
https://doi.org/10.3115/1067807.1067813


References 239

Brysbaert, Marc, Paweł Mandera, and Emmanuel Keuleers (2018). ‘The
word frequency effect in word processing: An updated review’. In:
Current Directions in Psychological Science 27.1, pp. 45–50 (cited on
page 106).

Buchwald, Adam, Oren Schwartz, Amanda Seidl, and Paul Smolensky
(2002). ‘Recoverability Optimality Theory: Discourse anaphora in a
bidirectional framework’. In: Proceedings of the 6th International workshop
on formal semantics and pragmatics of dialogue, pp. 37–44 (cited on
page 72).

C

Cappelli, Giulia, Pier Marco Bertinetto, and Alessandro Lenci (2019).
‘On the argumenthood of optional PPs with Italian motion verbs’. In:
Proceedings of 10th International Conference of Experimental Linguistics.
Ed. by Antonis Botinis. Vol. 25. Athens, Greece: ExLing Society, pp. 45–
48 (cited on page 38).

Cappelli, Giulia and Alessandro Lenci (2020). ‘PISA: Ameasure of Prefer-
ence In Selection of Arguments to model verb argument recoverability’.
In: Proceedings of the Ninth Joint Conference on Lexical and Computational
Semantics. Barcelona, Spain (Online): Association for Computational
Linguistics, pp. 131–136 (cited on pages vii, 2, 4, 6, 33, 68, 74, 89, 90, 92,
94–97, 129, 167, 170).

Carnie, Andrew (2012). Syntax: A generative introduction. John Wiley &
Sons (cited on pages 18, 24).

Cennamo, Michela (2017). ‘Object Omission and the Semantics of Predi-
cates in Italian in a Comparative Perspective’. In: Linguistik Aktuell/Lin-
guistics Today. Ed. by Lars Hellan, Andrej L. Malchukov, and Michela
Cennamo. Vol. 237. Amsterdam: John Benjamins Publishing Company,
pp. 252–273. doi: 10.1075/la.237.08cen (cited on pages 15, 43).

Cennamo, Michela and Alessandro Lenci (2019). ‘Gradience in Subcate-
gorization? Locative Phrases with Italian Verbs of Motion’. In: Studia
Linguistica 73.2, pp. 369–397. doi: 10.1111/stul.12095 (cited on
pages 34, 38, 63).

Chomsky, Noam (1957). Syntactic Structures. Walter de Gruyter (cited on
page 62).

– (1981). Lectures on government and binding: The Pisa lectures. Walter de
Gruyter (cited on page 55).

– (1982). Some concepts and consequences of the theory of government and
binding. MIT press (cited on pages 22, 54).

– (1991). ‘Some Notes on Economy of Derivation and Representation’. In:
Principles and Parameters in Comparative Grammar. Ed. by Robert Freidin.
Cambridge: The MIT Press (cited on page 54).

– (1993). ‘A minimalist program for linguistic theory’. In: The view from
Building 20: Essays in linguistics in honor of Sylvain Bromberger (cited on
page 61).

Ciaramita, Massimiliano and Mark Johnson (2000). ‘Explaining Away
Ambiguity: Learning Verb Selectional Preference with Bayesian Net-
works’. In: COLING 2000 Volume 1: The 18th International Conference on
Computational Linguistics. COLING 2000 (cited on page 92).

https://doi.org/10.1075/la.237.08cen
https://doi.org/10.1111/stul.12095


240 References

Civardi, Eugenio and Pier Marco Bertinetto (2015). ‘The semantics of
degree verbs and the telicity issue’. In: Borealis–An International Journal
of Hispanic Linguistics 4.1, pp. 57–77 (cited on page 44).

Clark, Stephen and David Weir (2001). ‘Class-Based Probability Esti-
mation Using a Semantic Hierarchy’. In: Second Meeting of the North
American Chapter of the Association for Computational Linguistics. NAACL
2001 (cited on page 92).

Comrie, Bernard (1976). Aspect: An introduction to the study of verbal
aspect and related problems. Vol. 2. Cambridge university press (cited on
pages 38, 42, 45, 102).

– (1989). Language universals and linguistic typology: Syntax and morphology.
University of Chicago press (cited on page 9).

Condoravdi,Cleo and JeanMarkGawron (1996). ‘TheContext-Dependency
of Implicit Arguments’. In:Quantifiers, Deduction, and Context. Stanford,
CA: CSLI Publications, pp. 1–32 (cited on page 18).

Copley, Bridget andHeidi Harley (2015). ‘A force-theoretic framework for
event structure’. In: Linguistics and Philosophy 38.2, pp. 103–158 (cited
on page 41).

Cote, Sharon Ann (1996). ‘Grammatical and Discourse Properties of Null
Arguments in English’. PhD thesis. University of Pennsylvania (cited
on pages 13, 14, 16, 21, 30, 31, 42, 48).

Crocker, Matthew and Frank Keller (2006). ‘Probabilistic Grammars as
Models of Gradience in Language Processing’. In:Gradience in Grammar:
Generative Perspectives (cited on page 62).

Culy, Christopher (1996). ‘Null Objects in English Recipes’. In: Language
Variation and Change 8.1, pp. 91–124. doi: 10.1017/S0954394500001083
(cited on pages 13, 14).

Cummins, Sarah and Yves Roberge (2004). ‘Null Objects in French and
English’. In: Current Issues in Linguistic Theory. Ed. by Julie Auger,
J. Clancy Clements, and Barbara Vance. Vol. 258. Amsterdam: John
Benjamins Publishing Company, pp. 121–138. doi: 10.1075/cilt.258.
07cum (cited on pages 12, 22).

– (2005). ‘A Modular Account of Null Objects in French’. In: Syntax
8.1, pp. 44–64. doi: 10.1111/j.1467-9612.2005.00074.x (cited on
pages 15, 22, 49).

Cunnings, Ian (2012). ‘An overview of mixed-effects statistical models
for second language researchers’. In: Second Language Research 28.3,
pp. 369–382 (cited on page 121).

D

David, Oana Alexandra (2016). ‘Metaphor in the Grammar of Argument
Realization’. PhD thesis. University of California, Berkeley. 207 pp.
(cited on page 11).

Davidson, Lisa and Matthew Goldrick (2003). ‘Tense, agreement and de-
faults in child Catalan: An Optimality Theoretic analysis’. In: Linguistic
theory and language development in Hispainic languages, pp. 193–211 (cited
on page 63).

Davies, Mark (2010). ‘The Corpus of Contemporary American English as
the first reliable monitor corpus of English’. In: Literary and linguistic
computing 25.4, pp. 447–464. doi: 10.1093/llc/fqq018 (cited on
page 171).

https://doi.org/10.1017/S0954394500001083
https://doi.org/10.1075/cilt.258.07cum
https://doi.org/10.1075/cilt.258.07cum
https://doi.org/10.1111/j.1467-9612.2005.00074.x
https://doi.org/10.1093/llc/fqq018


References 241

– (2012). ‘Expanding horizons in historical linguistics with the 400-
million word Corpus of Historical American English’. In: Corpora 7.2,
pp. 121–157 (cited on page 171).

De Smet, Hendrik (2005). ‘A corpus of Late Modern English texts’. In:
Icame Journal 29, pp. 69–82 (cited on page 171).

De Smet, Hendrik, Susanne Flach, Jukka Tyrkkö, and Hans-Jürgen Diller
(2015).Corpus of LateModern English texts (version 3.1) (cited on page 171).

DeLancey, Scott (1987). ‘Transitivity in grammar and cognition’. In:
Coherence and grounding in discourse. Typological studies in language.
Amsterdam: John Benjamins, pp. 53–68 (cited on page 45).

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova
(2018). BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. doi: 10.48550/ARXIV.1810.04805. url: https://
arxiv.org/abs/1810.04805 (cited on page 98).

Diesing, Molly (1992). Indefinites. Vol. 20. Linguistic Inquiry Monographs.
MIT Press, pp. xiv + 175 (cited on page 61).

Dixon, Robert M. W. (1992). A New Approach to English Grammar, on
Semantic Principles. Clarendon Press (cited on pages 45, 48).

Dowty, David Roach (1979 [2012]). Word meaning and Montague grammar:
The semantics of verbs and times in generative semantics and in Montague’s
PTQ. Vol. 7. Studies in Linguistics and Philosophy. Springer Science &
Business Media (cited on pages 41, 69, 70).

– (1981). ‘Quantification and the lexicon: A reply to Fodor and Fodor’. In:
The scope of lexical rules, pp. 79–106 (cited on page 21).

– (1991). ‘Thematic proto-roles and argument selection’. In: Language
67.3, pp. 547–619 (cited on pages 17, 39).

– (2003). ‘The Dual Analysis of Adjuncts/Complements in Categorial
Grammar’. In: Modifying Adjuncts. Ed. by Ewald Lang, Claudia Maien-
born, and Cathrine Fabricius-Hansen. Berlin, Boston: De Gruyter. doi:
10.1515/9783110894646.33 (cited on page 63).

Dvořák, Věra (2017a). ‘A Syntactic Approach to Indefinite Null Objects’.
In: NELS 48 (cited on pages 17, 18).

– (2017b). ‘Generic and Indefinite Null Objects’. PhD Thesis. Rutgers
University New Brunswick (cited on pages 14, 19, 23, 41, 42, 44).

E

Ebeling, Signe Oksefjell (2021). ‘To Score or to Score a Goal: Transitivity
in Football Match Reports’. In: English Studies 102.2, pp. 243–266 (cited
on page 14).

Endresen, Anna and Laura A. Janda (2017). ‘Five Statistical Models for
Likert-Type Experimental Data on Acceptability Judgments’. In: Journal
of Research Design and Statistics in Linguistics and Communication Science
3.2, pp. 217–250. doi: 10.1558/jrds.30822 (cited on page 121).

Engelberg, Stefan (2002). ‘Intransitive Accomplishments and the Lexi-
con: The Role of Implicit Arguments, Definiteness, and Reflexivity in
Aspectual Composition’. In: Journal of Semantics 19.4, pp. 369–416. doi:
10.1093/jos/19.4.369 (cited on page 8).

Erk, Katrin (2007). ‘A Simple, Similarity-Based Model for Selectional
Preferences’. In: Proceedings of the 45th annual meeting of the Association
of Computational Linguistics, pp. 216–223 (cited on page 94).

https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1515/9783110894646.33
https://doi.org/10.1558/jrds.30822
https://doi.org/10.1093/jos/19.4.369


242 References

Erk, Katrin, Sebastian Padó, and Ulrike Padó (2010). ‘A Flexible, Corpus-
Driven Model of Regular and Inverse Selectional Preferences’. In:
Computational Linguistics 36.4, pp. 723–763. doi: 10.1162/coli\_a\
_00017 (cited on page 94).

Erlewine, Michael Yoshitaka and Hadas Kotek (2016). ‘A Streamlined Ap-
proach to Online Linguistic Surveys’. In: Natural Language & Linguistic
Theory 34.2, pp. 481–495. doi: 10.1007/s11049-015-9305-9 (cited on
page 105).

Eu, Jinseung (2018). ‘On the Nature of Object Omission: Indefiniteness as
Indeterminacy’. In: English Language and Linguistics 22.3, pp. 523–530.
doi: 10.1017/S1360674317000296 (cited on pages 11, 13, 46).

Evert, Stefan (2005). ‘The statistics of word cooccurrences: word pairs
and collocations’. PhD thesis. Universität Stuttgart (cited on page 95).

F

Fellbaum, Christiane and Judy Kegl (1989). ‘Taxonomic structures and
cross-category linking in the lexicon’. In: Proceedings of the Sixth Eastern
State Conference on Linguistics. Ohio State University. Columbus, Ohio,
pp. 93–104 (cited on pages 21, 34–36, 46, 49).

Ferraresi, Adriano, Eros Zanchetta, Marco Baroni, and Silvia Bernardini
(2008). ‘Introducing and Evaluating Ukwac, a Very LargeWeb-Derived
Corpus of English’. In: In Proceedings of the 4th Web as Corpus Workshop
(WAC-4 (cited on page 96).

Filip, Hana (2004). ‘The telicity parameter revisited’. In: Semantics and
Linguistic Theory. Vol. 14, pp. 92–109 (cited on page 39).

Fillmore, Charles J. (1969). ‘Types of lexical information’. In: Studies in
syntax and semantics. Springer, pp. 109–137 (cited on pages 11, 17, 20,
157).

– (1986). ‘Pragmatically Controlled Zero Anaphora’. In: Proceedings of the
Twelfth Annual Meeting of the Berkeley Linguistics Society (1986), pp. 95–
107 (cited on pages vii, 1, 8, 11–13, 15–17, 19, 23, 27, 48, 49).

Firth, John R. (1957). ‘A synopsis of linguistic theory, 1930-1955’. In:
Studies in linguistic analysis (cited on page 92).

Fodor, Jerry and Janet Fodor (1980). ‘Functional structure, quantifiers,
and meaning postulates’. In: Linguistic Inquiry 11.4, pp. 759–770 (cited
on pages 18, 21).

Fraser, Bruce and John Robert Ross (1970). ‘Idioms and unspecified NP
deletion’. In: Linguistic Inquiry 1.2, pp. 264–265 (cited on page 17).

G

Gaeta, Livio, Claudio Iacobini, Davide Ricca, Marco Angster, Aurelio
De Rosa, and Giovanna Schirato (2013). ‘Midia: a balanced diachronic
corpus of italian’. In: 21st International Conference onHistorical Linguistics,
Oslo (cited on page 171).

García-Velasco, Daniel and Carmen Portero Muñoz (2002). ‘Understood
Objects in FunctionalGrammar’. In:Working papers in functional grammar
76, p. 25 (cited on pages 12, 14, 23, 32, 35, 36, 45, 49).

https://doi.org/10.1162/coli\_a\_00017
https://doi.org/10.1162/coli\_a\_00017
https://doi.org/10.1007/s11049-015-9305-9
https://doi.org/10.1017/S1360674317000296


References 243

Gibson, Edward, Steve Piantadosi, and Kristina Fedorenko (2011). ‘Using
Mechanical Turk to obtain and analyze English acceptability judg-
ments’. In: Language and Linguistics Compass 5.8, pp. 509–524 (cited on
pages 105, 121).

Gillon, Brendan S. (2006). English Relational Words, Context Sensitivity
and Implicit Arguments. Manuscript. url: https://semanticsarchive.
net/Archive/jk5ZjU1O/implicit-argument.pdf (cited on pages 18,
170).

– (2011). ‘French relational words, context sensitivity and implicit argu-
ments’. In: Current Research in the Semantics-Pragmatics Interface (Making
Semantics Pragmatic) 24, pp. 143–164 (cited on page 18).

– (2012). ‘Implicit Complements: A Dilemma for Model Theoretic Se-
mantics’. In: Linguistics and Philosophy 35.4, pp. 313–359. doi: 10.1007/
s10988-012-9120-2 (cited on pages 16, 18, 21).

Glass, Lelia (2013). ‘What Does It Mean for an Implicit Object to Be
Recoverable?’ In:University of Pennsylvania Working Papers in Linguistics
20.1 (cited on pages 3, 15, 16, 30–32, 48, 89, 103).

– (2020). ‘Verbs Describing Routines Facilitate Object Omission in En-
glish’. In: Proceedings of the Linguistic Society of America 5.1, p. 44. doi:
10.3765/plsa.v5i1.4663 (cited on pages 3, 28, 30–32, 45, 46, 49, 50,
103, 170).

– (2022). ‘English verbs can omit their objects when they describe rou-
tines’. In:English Language& Linguistics 26.1, pp. 49–73 (cited on pages 3,
30, 31).

Goldberg, Adele E. (2001). ‘Patient Arguments of Causative Verbs Can Be
Omitted: The Role of Information Structure in Argument Distribution’.
In: Language Sciences 23, p. 22 (cited on pages 13, 34, 35, 40, 46, 48, 49,
170, 171).

– (2005a). ‘Argument Realization: The Role of Constructions, Lexical
Semantics and Discourse Factors’. In: Constructional Approaches to
Language. Ed. by Jan-Ola Östman andMirjam Fried. Vol. 3. Amsterdam:
John Benjamins Publishing Company, pp. 17–43. doi: 10.1075/cal.3.
03gol (cited on pages 19, 23, 31, 49, 152).

– (2005b). ‘Constructions, Lexical Semantics and the Correspondence
Principle: Accounting for Generalizations and Subregularities in the
Realization of Arguments’. In: The Syntax of Aspect: Deriving Thematic
and Aspectual Interpretation. Erteschik-Shir, Nomi and Rapoport, Tova
(cited on pages 45, 49, 50, 170).

– (2006). Constructions at Work: The Nature of Generalization in Language.
Oxford Linguistics. Oxford University Press (cited on pages 48, 49).

Greene, Stephan and Philip Resnik (2009). ‘More than words: Syntactic
packaging and implicit sentiment’. In: Proceedings of human language
technologies: The 2009 nnual conference of the North American chapter of the
Association for Computational Linguistics, pp. 503–511 (cited on page 23).

Grimshaw, Jane and Vieri Samek-Lodovici (1998). ‘Optimal subjects
and subject universals’. In: Is the best good enough? Optimality and
Competition in Syntax. Ed. by Pilar Barbosa, Danny Fox, Paul Hagstrom,
Martha McGinnis, and David Pesetsky. MIT Press, pp. 193–219 (cited
on page 53).

Grishman, Ralph and John Sterling (1992). ‘Acquisition of Selectional
Patterns’. In: COLING 1992 Volume 2: The 15th International Conference
on Computational Linguistics. COLING 1992 (cited on page 92).

https://semanticsarchive.net/Archive/jk5ZjU1O/implicit-argument.pdf
https://semanticsarchive.net/Archive/jk5ZjU1O/implicit-argument.pdf
https://doi.org/10.1007/s10988-012-9120-2
https://doi.org/10.1007/s10988-012-9120-2
https://doi.org/10.3765/plsa.v5i1.4663
https://doi.org/10.1075/cal.3.03gol
https://doi.org/10.1075/cal.3.03gol


244 References

Groefsema, Marjolein (1995). ‘Understood arguments: A semantic/prag-
matic approach’. In: Lingua 96.2-3, pp. 139–161 (cited on pages 13, 23,
49).

Grootswagers, Tĳl (2020). ‘A primer on running human behavioural
experiments online’. In: Behavior Research Methods 52.6, pp. 2283–2286
(cited on pages 105, 106).

H

Haagsma, Hessel and Johannes Bjerva (2016). ‘Detecting Novel Metaphor
Using Selectional Preference Information’. In: Proceedings of the Fourth
Workshop on Metaphor in NLP. Proceedings of the Fourth Workshop
on Metaphor in NLP. San Diego, California: Association for Compu-
tational Linguistics, pp. 10–17. doi: 10.18653/v1/W16-1102 (cited on
page 92).

Haegeman, Liliane (1987). ‘RegisterVariation in English: SomeTheoretical
Observations’. In: Journal of English Linguistics 20.2, pp. 230–248. doi:
10.1177/007542428702000207 (cited on pages 13, 16).

Hall, Alison Margaret (2009). ‘Free pragmatic processes and explicit
utterance content’. PhD thesis. University of London (cited on page 23).

Hartkemeyer, Dale (2000). ‘An OT approach to atonic vowel loss patterns
in Old French and Old Spanish’. In: New Approaches to Old Problems:
Issues in Romance Historical Linguistics. Ed. by Steven Norman Dworkin
and Dieter Wanner, pp. 65–84 (cited on page 72).

Haspelmath, Martin (1994). ‘Passive participles across languages’. In:
Voice: Form and function 27 (cited on page 26).

Hayes, Bruce, Bruce Tesar, and Kie Zuraw (2003). OTSoft 2.1, Software
package. url: http://www.linguistics.ucla.edu/people/hayes/
otsoft/ (cited on page 53).

Hickman, Louis, Julia Taylor, and Victor Raskin (2016). ‘Direct Object
Omission as a Sign of Conceptual Defaultness’. In: Proceedings of the
Twenty-Ninth International Florida Artificial Intelligence Research Society
Conference, pp. 516–521 (cited on pages 30, 31).

Hilpert, Martin and Stefan Th. Gries (2016). ‘Quantitative approaches
to diachronic corpus linguistics’. In: The Cambridge handbook of English
historical linguistics. Ed. by Merja Kytö and Päivi Pahta. Cambridge
University Press, pp. 36–53. doi: 10.1017/CBO9781139600231.003
(cited on page 171).

Hopper, Paul J. and Sandra A. Thompson (1980). ‘Transitivity in Grammar
and Discourse’. In: Language 56.2, p. 251. doi: 10.2307/413757 (cited
on pages vii, 1, 8–10, 15, 17, 25, 27, 33, 38, 40, 43, 44, 110, 154, 168).

Huddleston, Rodney, Rodney D. Huddleston, Geoffrey K. Pullum, and
Laurie Bauer (2002). The Cambridge Grammar of the English Language.
Cambridge University Press (cited on pages 8, 12, 19, 20).

I

Iacobini, Claudio, Aurelio De Rosa, and Giovanna Schirato (2014). ‘Part-
of-Speech tagging strategy for MIDIA: a diachronic corpus of the
Italian language’. In: Proceedings of the First Italian Conference on Compu-
tational Linguistics CLiC-it 2014 & and of the Fourth International Workshop

https://doi.org/10.18653/v1/W16-1102
https://doi.org/10.1177/007542428702000207
http://www.linguistics.ucla.edu/people/hayes/otsoft/
http://www.linguistics.ucla.edu/people/hayes/otsoft/
https://doi.org/10.1017/CBO9781139600231.003
https://doi.org/10.2307/413757


References 245

EVALITA 2014: 9-11 December 2014, Pisa. Pisa: Pisa University Press,
pp. 213–218 (cited on page 171).

Ikegami, Yoshihiko (1991). ‘’DO-language’ and ’BECOME-language’: Two
contrasting types of linguistic representation’. In: The empire of signs:
Semiotic essays on Japanese culture 8, pp. 285–327 (cited on page 172).

Ingham, Richard (1993). ‘Input and Learnability: Direct-Object Omissibil-
ity in English’. In: Language Acquisition 3.2, pp. 95–120. doi: 10.1207/
s15327817la0302\_1 (cited on page 31).

Isingoma, Bebwa (2020). ‘Implicit Arguments in English and Rutooro’. In:
Linguistik Online 101.1, pp. 19–47. doi: 10.13092/LO.101.6671 (cited
on page 26).

Iten, Corinne, Marie-Odile Junker, Aryn Pyke, Robert Stainton, and
Catherine Wearing (2005). ‘Null complements: Licensed by syntax or
by semantics-pragmatics?’ In: Proceedings of the Annual Conference of the
Canadian Linguistic Association, pp. 1–15 (cited on pages 20, 23).

Iwata, Seizi (2002). ‘Does MANNER Count or Not? Manner-of-Motion
Verbs Revisited’. In: Linguistics 40.1. doi: 10.1515/ling.2002.008
(cited on page 34).

J

Jackendoff, Ray (2003). Foundations of Language: Brain, Meaning, Grammar,
Evolution. Oxford University Press (cited on pages 16, 37, 172).

Jespersen, Otto (1927). A Modern English Grammar on Historical Principles.
Part III. Syntax. Vol. 2. Routledge (cited on page 30).

Juzek, Tom S. (2016). ‘Acceptability Judgement Tasks and Grammatical
Theory’. PhD thesis. University of Oxford (cited on pages 112, 113).

Juzek, Tom S. and Jana Häussler (2019). ‘Semantic Influences on Syntactic
Acceptability Ratings’. In: Proceedings of Linguistic Evidence 2018: Ex-
perimental Data Drives Linguistic Theory. Ed. by Anstatt Gattnar, Robin
Hörnig, Melanie Störzer, and Sam Featherston. Tübingen: University
of Tübingen, pp. 341–355 (cited on page 60).

K

Kardos, Eva (2010). ‘The Argument Expression of Change-of-State Verbs
and Pseudo-Transitive Verbs’. In: Bergen Language and Linguistics Studies
1. doi: 10.15845/bells.v1i1.50 (cited on pages 9, 17, 31).

Katz, Jerrold J. and Paul M. Postal (1967). ‘An integrated theory of
linguistic description’. In: Synthese 17.1 (cited on page 17).

Keller, Frank (1997). ‘Extraction, gradedness, and optimality’. In: Uni-
versity of Pennsylvania Working Papers in Linguistics 4.2, p. 12 (cited on
pages 60, 61, 64, 167).

– (1998a). ‘Gradient grammaticality as an effect of selective constraint
re-ranking’. In: Papers from the 34th meeting of the Chicago Linguistic
Society. Vol. 2, pp. 95–109 (cited on page 63).

– (1998b). ‘Grammaticality Judgments and Linguistic Methodology’. In:
Research Paper EUCCS-RP-1998-3, p. 16 (cited on page 62).

– (2000). ‘Gradience in Grammar: Experimental and Computational
Aspects of Degrees of Grammaticality’. PhD Thesis. University of
Edinburgh (cited on pages 59, 63, 161).

https://doi.org/10.1207/s15327817la0302\_1
https://doi.org/10.1207/s15327817la0302\_1
https://doi.org/10.13092/LO.101.6671
https://doi.org/10.1515/ling.2002.008
https://doi.org/10.15845/bells.v1i1.50


246 References

Keller, Frank (2006). ‘Linear Optimality Theory as a Model of Gradience
in Grammar’. In: Gradience in Grammar: Generative Perspectives (cited on
pages 59, 63, 161).

Keller, Frank and Ash Asudeh (2002). ‘Probabilistic Learning Algorithms
and Optimality Theory’. In: Linguistic Inquiry 33.2, pp. 225–244. doi:
10.1162/002438902317406704 (cited on page 169).

Keller, Frank and Maria Lapata (1998). ‘Object Drop and Discourse
Accessibility’. In: Proceedings of the 17th West Coast Conference on Formal
Linguistics. Stanford, CA: CSLI Publications, pp. 362–374 (cited on
page 12).

Keller, Frank and Antonella Sorace (2003). ‘Gradient Auxiliary Selection
and Impersonal Passivization in German: An Experimental Investiga-
tion’. In: Journal of Linguistics 39.1, pp. 57–108 (cited on page 62).

Kemmer, Suzanne (1993). The Middle Voice. John Benjamins Publishing
Company (cited on page 9).

Kempen, Gerard and Karin Harbusch (2005). ‘The Relationship between
Grammaticality Ratings and Corpus Frequencies: A Case Study into
Word Order Variability in the Midfield of German Clauses’. In: Lin-
guistic Evidence. Ed. by Henk van Riemsdĳk, Harry van der Hulst,
Jan Koster, Stephan Kepser, and Marga Reis. Vol. 85. Berlin, New York:
Mouton de Gruyter, pp. 329–350. doi: 10.1515/9783110197549.329
(cited on pages 50, 169, 170).

– (2008). ‘Comparing Linguistic Judgments and Corpus Frequencies as
Windows on Grammatical Competence: A Study of Argument Lin-
earization in German Clauses’. In: The Discourse Potential of Underspeci-
fied Structures. Ed. by Anita Steube. Language, context, and cognition.
Berlin: Walter de Gruyter. doi: 10.1515/9783110209303.3.179 (cited
on page 169).

Kim, Najoung, Kyle Rawlins, and Paul Smolensky (2018).AGradient Blend
Analysis of English PP Verbal Dependents (cited on pages 63, 99, 116).

– (2019). The Complement-Adjunct Distinction As Gradient Blends: The Case
Of English Prepositional Phrases (cited on pages 63, 99, 116).

Kim, Najoung, Kyle Rawlins, Benjamin Van Durme, and Paul Smolensky
(2019). Predicting the Argumenthood of English Prepositional Phrases. arXiv:
1809.07889 [cs] (cited on pages 63, 99, 116).

Kizach, Johannes (2014). Analyzing Likert-Scale Data with Mixed-Effects Lin-
ear Models - a Simulation Study. Poster Presented at Linguistic Evidence
(cited on page 121).

Koenig, Jean-Pierre, Gail Mauner, and Breton Bienvenue (2002). ‘Class
Specificity and the Lexical Encoding of Participant Information’. In:
Brain and Language 81.1-3, pp. 224–235. doi: 10.1006/brln.2001.2519
(cited on page 170).

– (2003). ‘Arguments for Adjuncts’. In: Cognition 89.2, pp. 67–103. doi:
10.1016/S0010-0277(03)00082-9 (cited on page 170).

Koenig, Jean-Pierre, Gail Mauner, Breton Bienvenue, and Kathy Conklin
(2007). ‘What with? The Anatomy of a (Proto)-Role’. In: Journal of
Semantics 25.2, pp. 175–220. doi: 10.1093/jos/ffm013 (cited on
page 170).

Korkiakangas, Timo (2018). ‘Verso l’analisi della transitività dei generi
testuali latini: il caso del latino notarile’. In: Studi e Saggi Linguistici
56.1, pp. 9–41 (cited on page 14).

https://doi.org/10.1162/002438902317406704
https://doi.org/10.1515/9783110197549.329
https://doi.org/10.1515/9783110209303.3.179
https://arxiv.org/abs/1809.07889
https://doi.org/10.1006/brln.2001.2519
https://doi.org/10.1016/S0010-0277(03)00082-9
https://doi.org/10.1093/jos/ffm013


References 247

Kučera,Henry andWinthropNelson Francis (1967).Computational analysis
of present-day American English. University Press of New England (cited
on page 69).

Kuhn, Jonas (2002). ‘Corpus-based Learning in Stochastic OT-LFG–
Experiments with a Bidirectional Bootstrapping Approach’. In: The
LFG 02 Conference. Citeseer, pp. 239–257 (cited on pages 55, 58, 59, 167).

L

Landau, Idan (2010). ‘The Explicit Syntax of Implicit Arguments’. In:
Linguistic Inquiry 41.3, pp. 357–388. doi: 10.1162/LING\_a\_00001
(cited on page 22).

Langsford, Steven, Amy Perfors, Andrew T. Hendrickson, Lauren A.
Kennedy, and Danielle J. Navarro (2018). ‘Quantifying Sentence Ac-
ceptability Measures: Reliability, Bias, and Variability’. In: Glossa: A
journal of general linguistics 3.1, p. 37. doi: 10.5334/gjgl.396 (cited on
page 106).

Larson, Pär, Elena Artale, and Diego Dotto (2005). Corpus OVI dell’Italiano
antico. Firenze, Istituto Opera del Vocabolario Italiano. url: http:
//gattoweb.ovi.cnr.it/ (cited on page 171).

Lasersohn, Peter (1995 [2013]). Plurality, conjunction and events. Vol. 55.
Springer Science & Business Media (cited on page 47).

– (1993). ‘Lexical Distributivity and Implicit Arguments’. In: Semantics
and Linguistic Theory 3, p. 145. doi: 10.3765/salt.v3i0.2751 (cited
on pages 18, 170).

Lau, Jey Han, Alexander Clark, and Shalom Lappin (2017). ‘Gram-
maticality, Acceptability, and Probability: A Probabilistic View of
Linguistic Knowledge’. In: Cognitive Science 41.5, pp. 1202–1241. doi:
10.1111/cogs.12414 (cited on page 60).

Lavidas, Nikolaos (2013). ‘Null and Cognate Objects and Changes in
(in)Transitivity: Evidence from the History of English’. In: Acta Lin-
guistica Hungarica 60.1, pp. 69–106. doi: 10.1556/ALing.60.2013.1.2
(cited on page 47).

Lazard, Gilbert (2002). ‘Transitivity Revisited as an Example of a More
Strict Approach in Typological Research’. In: Folia Linguistica 36.3-4,
pp. 141–190. doi: 10.1515/flin.2002.36.3-4.141 (cited on page 43).

Legendre, Géraldine (2001). ‘An introduction to Optimality Theory in
syntax’. In: Optimality-Theoretic Syntax. Ed. by Géraldine Legendre,
Jane Grimshaw, and Sten Vikner. MIT Press. Chap. 1, pp. 1–27 (cited
on pages 53, 55, 72).

– (2019). ‘Optimality-Theoretic Syntax’. In: Current Approaches to Syntax.
A Comparative Handbook. Ed. by András Kertész, Edith Moravcsik,
and Csilla Rákosi. De Gruyter Mouton. Chap. 10, pp. 263–290. doi:
10.1515/9783110540253-010 (cited on page 53).

Legendre, Géraldine, Yoshiro Miyata, and Paul Smolensky (1990). ‘Can
Connectionism Contribute to Syntax? Harmonic Grammar, with an
Application’. In: Proceedings of the 26th Meeting of the Chicago Linguistic
Society. Citeseer (cited on page 58).

– (1991). ‘Unifying syntactic and semantic approaches to unaccusativity:
A connectionist approach’. In: Annual Meeting of the Berkeley Linguistics
Society. Vol. 17. 1, pp. 156–167 (cited on page 58).

https://doi.org/10.1162/LING\_a\_00001
https://doi.org/10.5334/gjgl.396
http://gattoweb.ovi.cnr.it/
http://gattoweb.ovi.cnr.it/
https://doi.org/10.3765/salt.v3i0.2751
https://doi.org/10.1111/cogs.12414
https://doi.org/10.1556/ALing.60.2013.1.2
https://doi.org/10.1515/flin.2002.36.3-4.141
https://doi.org/10.1515/9783110540253-010


248 References

Legendre, Géraldine, Paul Smolensky, and Colin Wilson (1998). ‘When is
Less More? Faithfulness and Minimal Links in wh -Chains’. In: Is the
Best Good Enough? Optimality and Competition in Syntax. Ed. by Pilar
Barbosa, Danny Fox, Paul Hagstrom, Martha McGinnis, and David
Pesetsky. Cambridge, MA: MIT Press and MIT Working Papers in
Linguistics, pp. 249–289 (cited on page 61).

Legendre, Géraldine, Antonella Sorace, and Paul Smolensky (2006). ‘The
Optimality Theory-Harmonic Grammar connection’. In: The harmonic
mind: From neural computation to Optimality Theoretic grammar, Volume
2: Linguistic and philosophical implications. Ed. by Paul Smolensky and
Géraldine Legendre. MIT Press, pp. 339–402 (cited on pages 58, 59).

Legendre, Géraldine, Colin Wilson, Paul Smolensky, Kristin Homer,
and William Raymond (1995). ‘Optimality and Wh-Extraction’. In:
Papers in Optimality Theory. Ed. by Jill Beckman, Laura Walsh Dickey,
and Suzanne Urbanczyk. Vol. 18. Occasional Papers in Linguistics.
University of Massachusetts, pp. 607–636 (cited on page 61).

Lemmens, Maarten (2006). ‘More on objectless transitives and ergativiza-
tion patterns in English’. In: Constructions 1. Ed. by Doris Schönefeld.
doi: 10.24338/cons-447 (cited on pages 17, 37).

Lenci, Alessandro (2008). ‘Distributional semantics in linguistic and
cognitive research’. In: Italian Journal of Linguistics 20.1, pp. 1–31 (cited
on page 92).

– (2018). ‘Distributional Models of Word Meaning’. In: Annual Review of
Linguistics 4, pp. 151–171 (cited on page 92).

Levin, Beth (1993). English Verb Classes and Alternations: A Preliminary
Investigation. Chicago: University of Chicago Press. 348 pp. (cited on
pages 17, 19, 23, 35, 46, 106, 108).

Levin, Beth and Malka Rappaport Hovav (2008). ‘Lexicalized manner
and result are in complementary distribution’. In: Handout of talk given
at the 24th meeting of the Israeli Association for Theoretical Linguistics,
pp. 26–27 (cited on pages 34–36).

Linzen, Tal and Yohei Oseki (2018). ‘The Reliability of Acceptability
Judgments across Languages’. In: Glossa: A journal of general linguistics
3.1, p. 100. doi: 10.5334/gjgl.528 (cited on page 62).

Liu, Dilin (2008). ‘Intransitive or Object Deleting?: Classifying English
Verbs Used without an Object’. In: Journal of English Linguistics 36.4,
pp. 289–313. doi: 10.1177/0075424208317128 (cited on pages 10, 12,
14, 23, 32).

Liu, Lei (2014). ‘Reconsidering the End-Point Approach: (A)Telicity and
(Un)Boundedness Distinction’. In: Theory and Practice in Language
Studies 4.1, pp. 137–142. doi: 10.4304/tpls.4.1.137-142 (cited on
page 101).

Lorenzetti, Maria Ivana (2008). ‘The Null Instantiation of Objects as a
Polysemy-Trigger. A Study on the English Verb See’. In: Lexis Journal
in English Lexicology 1. doi: 10.4000/lexis.769 (cited on pages 10, 19,
22, 23, 42, 49, 50, 170).

M

MacWhinney, Brian (2000). The CHILDES Project: Tools for analyzing talk.
Vol. 1. Psychology Press (cited on page 69).

https://doi.org/10.24338/cons-447
https://doi.org/10.5334/gjgl.528
https://doi.org/10.1177/0075424208317128
https://doi.org/10.4304/tpls.4.1.137-142
https://doi.org/10.4000/lexis.769


References 249

Magri, Giorgio (2018). ‘Implicational Universals in Stochastic Constraint-
Based Phonology’. In: Proceedings of the 2018 Conference on Empirical
Methods inNatural Language Processing, pp. 3265–3274 (cited onpage 63).

Makowski, Dominique,Mattan S. Ben-Shachar, Indrajeet Patil, andDaniel
Lüdecke (2021). Automated Results Reporting as a Practical Tool to Improve
Reproducibility and Methodological Best Practices Adoption. url: https:
//github.com/easystats/report (cited on page 121).

Malchukov, Andrej L. (2006). ‘Transitivity parameters and transitivity
alternations’. In: Case, valency and transitivity. Ed. by Leonid Kulikov,
Andrej L. Malchukov, and Peter de Swart. Vol. 77. Amsterdam: John
Benjamins Publishing Company, pp. 329–357 (cited on page 33).

Manning, Christopher D. (2003). Probabilistic Syntax. Ed. by Rens Bod,
Jennifer Hay, and Stefanie Jannedy. Mit Press (cited on pages 62, 63,
167, 169).

Maouene, Josita, Aarre Laakso, and Linda B. Smith (2011). ‘Object As-
sociations of Early-Learned Light and Heavy English Verbs’. In: First
Language 31.1, pp. 109–132. doi: 10.1177/0142723710380528 (cited on
page 32).

Marantz, Alec (1981). ‘On the nature of grammatical relations’. PhD thesis.
Massachusetts Institute of Technology (cited on page 26).

Martí, Luisa (2010). ‘Implicit Indefinite Objects: The Barest of the Bare’.
In: Occasional Papers Advancing Linguistics 15 (cited on page 23).

– (2015). ‘Grammar versus Pragmatics: Carving Nature at the Joints:
Grammar versus Pragmatics’. In:Mind & Language 30.4, pp. 437–473.
doi: 10.1111/mila.12086 (cited on pages 18, 23–25).

Massam, Diane (1992). ‘Null Objects and Non-Thematic Subjects’. In:
Journal of Linguistics 28.1, pp. 115–137 (cited on page 14).

Massam, Diane and Yves Roberge (1989). ‘Recipe Context Null Objects in
English’. In: Linguistic Inquiry 20.1, pp. 134–139 (cited on page 14).

Mastrofini, Roberta (2013). ‘English manner of speaking verbs and their
Italian translations’. In: Athens Journal of Philology 1.2, pp. 83–98. doi:
10.30958/ajp.1-2-1 (cited on page 136).

McShane, Marjorie J. (2005). A Theory of Ellipsis. Oxford University Press,
USA (cited on page 21).

Medina, Tamara Nicol (2007). ‘LearningWhich Verbs Allow Object Omis-
sion: Verb Semantic Selectivity and the Implicit Object Construction’.
PhD thesis. Johns Hopkins University (cited on pages vii, 1, 2, 4, 6, 12,
31–33, 35, 39–45, 50–52, 57, 63, 64, 67, 68, 70–73, 75–78, 81–83, 86, 89,
98, 102, 103, 109, 112, 116, 121, 122, 128–130, 132, 133, 135, 137, 139, 141,
149, 150, 155, 158, 160, 164, 167, 168, 170, 173).

Megitt, Maria (2019). "When Top Coals Are Partially Covered with Ash, Pour
Evenly over Grill." A Study of Clause-Initial Adverbials and Ellipsis in
Recipes. Term Paper (cited on page 14).

Melchin, Paul (2019). ‘The Semantic Basis for Selectional Restrictions’.
PhD thesis. University of Ottawa. 188 pp. (cited on pages 12, 18, 19,
34–36, 39, 41).

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013).
‘Efficient estimation of word representations in vector space’. arXiv
preprint arXiv:1301.3781 (cited on page 96).

Miller, George A. (1995). ‘WordNet: A Lexical Database for English’. In:
Communications of the ACM 38.11, pp. 39–41. doi: 10.1145/219717.
219748 (cited on pages 36, 68, 91, 106).

https://github.com/easystats/report
https://github.com/easystats/report
https://doi.org/10.1177/0142723710380528
https://doi.org/10.1111/mila.12086
https://doi.org/10.30958/ajp.1-2-1
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748


250 References

Mithun, Marianne (2009). ‘Polysynthesis in the Arctic’. In: Variations on
polysynthesis: The Eskaleut languages. Ed. by Marc-Antoine Mahieu and
Nicole Tersis, pp. 3–18 (cited on page 24).

Mittwoch, Anita (1982). ‘On the Difference between Eating and Eating
Something: Activities versus Accomplishments’. In: Linguistic Inquiry
13.1, pp. 113–122. JSTOR: 4178263 (cited on pages 18, 21, 38, 40, 69).

– (2005). ‘Unspecified Arguments in Episodic and Habitual Sentences’.
In: The Syntax of Aspect. Oxford Studies in Theoretical Linguistics.
Oxford University Press, pp. 237–254 (cited on pages 16, 18, 19, 25, 32,
46–48).

Myers, James (2009). ‘Syntactic Judgment Experiments’. In: Language
and Linguistics Compass 3.1, pp. 406–423. doi: 10 . 1111 / j . 1749 -
818X.2008.00113.x (cited on page 113).

N

Nadejde, Maria, Alexandra Birch, and Philipp Koehn (2016). ‘Modeling
Selectional Preferences of Verbs and Nouns in String-to-Tree Machine
Translation’. In: Proceedings of the First Conference on Machine Translation:
Volume 1, Research Papers. Berlin, Germany: Association for Computa-
tional Linguistics, pp. 32–42. doi: 10.18653/v1/W16-2204 (cited on
page 92).

Næss, Åshild (2007). ‘Prototypical Transitivity’. In: Typological Studies in
Language 72 (cited on pages 8, 9, 19, 20, 22, 25–27, 33, 34, 36, 39, 40,
42–44).

– (2009). ‘How Transitive Are EAT and DRINK Verbs?’ In: The Linguistics
of Eating and Drinking. John Benjamins Publishing (cited on page 9).

– (2011). ‘The Grammar of Eating and Drinking Verbs’. In: Language
and Linguistics Compass 5.6, pp. 413–423. doi: 10 . 1111 / j . 1749 -
818X.2011.00279.x (cited on pages 20, 26, 27, 39, 46).

Nagy, Naomi and Bill Reynolds (1997). ‘Optimality Theory and variable
word-final deletion in Faetar’. In: Language variation and change 9.1,
pp. 37–55 (cited on page 65).

Nedjalkov, Vladimir P. and Sergej J. Jaxontov (1988). ‘Typology of re-
sultative constructions’. In: Typology of causative constructions. Ed. by
Vladimir P. Nedjalkov. Vol. 48. Typological Studies in Language. Ams-
terdam: John Benjamins Publishing, pp. 3–62 (cited on page 26).

Németh, Enikő (2014). ‘Implicit Arguments at the Grammar-Pragmatics
Interface: Some Methodological Considerations’. In: Argumentum 10,
pp. 679–694 (cited on pages 48, 170).

Newman, John and Sally Rice (2006). ‘Transitivity Schemas of English
EAT andDRINK in the BNC’. In:Corpora in Cognitive Linguistics: Corpus-
BasedApproaches to Syntax and Lexis. DeGruyterMouton.Chap.Corpora
in Cognitive Linguistics, pp. 225–260 (cited on pages 19, 20, 39).

Nicolas, Aline (2019). ‘Transitive Structures with Generic or Indefinite
Object-Arguments in English as Functionally Antipassive Construc-
tions’. Master’s Thesis. Université de Liège (cited on page 26).

http://www.jstor.org/stable/4178263
https://doi.org/10.1111/j.1749-818X.2008.00113.x
https://doi.org/10.1111/j.1749-818X.2008.00113.x
https://doi.org/10.18653/v1/W16-2204
https://doi.org/10.1111/j.1749-818X.2011.00279.x
https://doi.org/10.1111/j.1749-818X.2011.00279.x


References 251

O

O’Grady, William, Yoshie Yamashita, and Sookeun Cho (2008). ‘Object
Drop in Japanese and Korean’. In: Language Acquisition 15.1, pp. 58–68.
doi: 10.1080/10489220701774278 (cited on page 31).

Ohlander, Urban (1943). ‘Omission of the Object in English’. In: Studia
Neophilologica 16.1, pp. 105–127. doi: 10.1080/00393274308586940
(cited on page 30).

Olsen, Mari Broman (1997 [2014]). A Semantic and Pragmatic Model of
Lexical and Grammatical Aspect. Routledge (cited on pages 35, 40–42, 44,
69–71, 83, 100, 102, 103).

Olsen, Mari Broman and Philip Resnik (1997). ‘Implicit Object Construc-
tions and the (In)Transitivity Continuum’. In: In Proceedings of the 33rd
Regional Meeting of the Chicago Linguistics Society, pp. 327–336 (cited on
pages 30, 32, 40, 69).

Olsen, Mari Broman, Amy Weinberg, Jeffrey P. Lilly, and John E. Drury
(1998). ‘Acquiring grammatical aspect via lexical aspect: The continuity
hypothesis’. In: University of Maryland Working Papers in Linguistics 6,
pp. 122–151 (cited on page 44).

Onelli, Corinna, Domenico Proietti, Corrado Seidenari, and Fabio Tam-
burini (2006). ‘The DiaCORIS project: a diachronic corpus of written
Italian’. In: Proceedings of the Fifth International Conference on Language
Resources and Evaluation (LREC’06) (cited on page 171).

Onozuka, Hiromi (2007). ‘Remarks on Causative Verbs and Object
Deletion in English’. In: Language Sciences 29.4, pp. 538–553. doi:
10.1016/j.langsci.2006.01.002 (cited on page 35).

P

Padó, Ulrike, MatthewW. Crocker, and Frank Keller (2009). ‘A Probabilis-
tic Model of Semantic Plausibility in Sentence Processing’. In: Cognitive
Science 33.5, pp. 794–838. doi: 10.1111/j.1551-6709.2009.01033.x
(cited on page 92).

Paesani, Kate (2006). ‘Extending the Nonsentential Analysis. The Case
of Special Registers’. In: The Syntax of Nonsententials: Multidisciplinary
Perspectives. Ed. by Ljiljana Progovac. Linguistik Aktuell = Linguistics
Today v. 93. Amsterdam ; Philadelphia: John Benjamins Publishing,
pp. 147–182 (cited on page 14).

Pater, Joe (2009). ‘Weighted constraints in generative linguistics’. In:
Cognitive science 33.6, pp. 999–1035 (cited on pages 58, 59).

Pater, Joe, Christopher Potts, and Rajesh Bhatt (2006). Harmonic Grammar
with Linear Programming (cited on page 161).

Paul, Ileana and Diane Massam (2021). ‘Licensing null arguments in
recipes across languages’. In: Journal of Linguistics 57.4, pp. 815–839
(cited on page 14).

Peirce, Jonathan, Jeremy R. Gray, Sol Simpson, Michael MacAskill,
RichardHöchenberger,Hiroyuki Sogo, ErikKastman, and JonasKristof-
fer Lindeløv (2019). ‘PsychoPy2: Experiments in behavior made easy’.
In: Behavior research methods 51.1, pp. 195–203 (cited on page 105).

Pérez-Leroux, Ana Teresa, Mihaela Pirvulescu, and Yves Roberge (2011).
‘Topicalization and Object Omission in Child Language’. In: First
Language 31.3, pp. 280–299. doi: 10.1177/0142723710394384 (cited on
page 31).

https://doi.org/10.1080/10489220701774278
https://doi.org/10.1080/00393274308586940
https://doi.org/10.1016/j.langsci.2006.01.002
https://doi.org/10.1111/j.1551-6709.2009.01033.x
https://doi.org/10.1177/0142723710394384


252 References

Pérez-Leroux, Ana Teresa, Mihaela Pirvulescu, and Yves Roberge (2018).
Direct Objects and Language Acquisition. Cambridge Studies in Linguis-
tics. Cambridge: Cambridge University Press (cited on page 31).

Pérez-Leroux, Ana Teresa, Mihaela Pirvulescu, Yves Roberge, and Anny
Castilla (2013). ‘On the Development of Null Implicit Objects in L1
English’. In: Canadian Journal of Linguistics/Revue canadienne de linguis-
tique 58.3, pp. 443–464. doi: 10.1017/S0008413100002656 (cited on
page 31).

Perlmutter, David M. (1978). ‘Impersonal passives and the unaccusative
hypothesis’. In: Annual meeting of the Berkeley Linguistics Society. Vol. 4,
pp. 157–190 (cited on page 8).

Permuth-Wey, Jennifer and Amy R. Borenstein (2009). ‘Financial Remu-
neration for Clinical and Behavioral Research Participation: Ethical and
Practical Considerations’. In: Annals of Epidemiology 19.4, pp. 280–285.
doi: https://doi.org/10.1016/j.annepidem.2009.01.004 (cited
on page 113).

Pethõ, Gergely and Eva Kardos (2006). ‘A Cross-Linguistic Investigation
of the Licensing and Interpretation of Implicit Object Arguments’. In:
Pre-Proceedings of the SPRIK Conference 2006 (cited on pages 12, 16, 18,
21, 26, 46, 49).

Piñón, Christopher (2008). ‘Aspectual composition with degrees’. In:
Adjectives and Adverbs: Syntax, Semantics, and Discourse. Ed. by Louise
McNally and Chris Kennedy. Oxford: Oxford University Press, pp. 183–
219 (cited on pages 35, 39).

Prince, Alan and Paul Smolensky (1993 [2008]). Optimality Theory: Con-
straint Interaction in Generative Grammar. Wiley-Blackwell (cited on
pages 52, 60).

– (1997). ‘Optimality: From neural networks to universal grammar’. In:
Science 275.5306, pp. 1604–1610 (cited on page 52).

Prytz, Johanna (2016). ‘Optional Rhemes and Omitted Undergoers : An
Event Structure Approach to Implicit Objects in Swedish’. PhD thesis.
Stockholm University (cited on page 45).

Q

Quirk, Randolph, Sidney Greenbaum, Geoffrey Neil Leech, and Jan
Svartvik (1985). A grammar of contemporary English. Longman London
(cited on pages 14, 19).

R

Radden, Günter and Ken-ichi Seto (2003). ‘Metonymic construals of
shopping requests in HAVE-and BE-languages’. In: Metonymy and
Pragmatic Inferencing. Ed. by Klaus-Uwe Panther and Linda L. Thorn-
burg. Pragmatics and beyond. Amsterdam: John Benjamins Publishing
Company, pp. 223–240 (cited on page 172).

RappaportHovav,Malka and Beth Levin (1998). ‘Building verbmeanings’.
In: The projection of arguments: Lexical and compositional factors, pp. 97–134
(cited on pages 34–36).

– (2005). ‘Change-of-State Verbs: Implications for Theories of Argument
Projection’. In: The Syntax of Aspect (cited on pages 17, 34, 35).

https://doi.org/10.1017/S0008413100002656
https://doi.org/https://doi.org/10.1016/j.annepidem.2009.01.004


References 253

– (2010). ‘Reflections on Manner/Result Complementarity*’. In: Lexical
Semantics, Syntax, and Event Structure. Ed. by Malka Rappaport Hovav,
Edit Doron, and Ivy Sichel. Oxford University Press, pp. 21–38. doi:
10.1093/acprof:oso/9780199544325.003.0002 (cited on pages 34,
35).

Rasetti, Lucienne (2003). ‘Optional categories in early French syntax: a
developmental study of root infinitives andnull arguments’. PhD thesis.
Université de Genève. doi: 10.13097/archive-ouverte/unige:561
(cited on page 31).

Ratitamkul, Theeraporn, Adele E. Goldberg, and Cynthia Fisher (2004).
‘The Role of Discourse Context in Determining the Argument Structure
of Novel Verbs with Omitted Arguments’. In: Proceedings of the 32nd
Stanford Child Language Research Forum. Stanford, CA (cited on page 31).

Recanati, François (2002). ‘Unarticulated constituents’. In: Linguistics and
Philosophy 25.3, pp. 299–345 (cited on pages 23, 170).

Resnik, Philip (1993). Selection and Information: A Class-Based Approach
to Lexical Relationships. IRCS Technical Reports Series. University of
Pennsylvania. 177 pp. (cited on pages vii, 2, 4, 15, 30, 32, 33, 67, 68, 74,
75, 78, 83, 89–91, 106, 108, 116, 129, 160, 166–168).

– (1996). ‘Selectional Constraints: An Information-Theoretic Model and
Its Computational Realization’. In: Cognition 61.1-2, pp. 127–159. doi:
10.1016/S0010-0277(96)00722-6 (cited on pages vii, 15, 30, 32, 49,
50, 67–69, 74, 75, 78, 83, 89, 91, 92, 116, 129, 160, 168).

Reynolds, William Thomas (1994). ‘Variation and phonological theory’.
PhD thesis. University of Pennsylvania (cited on page 65).

Rice, Sally (1988). ‘Unlikely Lexical Entries’. In: Proceedings of the Annual
Meeting of the Berkeley Linguistics Society. Vol. 14, pp. 202–212 (cited on
pages 16, 19, 32, 34–37, 174).

Rimmer, Wayne (2006). ‘Grammaticality judgment tests: Trial by error’.
In: Journal of Language and Linguistics 5.2, pp. 246–261 (cited on page 60).

Rissanen, Matti (1993). ‘The Helsinki Corpus of English Texts’. In: Corpora
Across the Centuries: Proceedings of the First International Colloquium on
English Diachronic Corpora. Ed. by Merja Kytö, Matti Rissanen, and
Susan Wright, pp. 73–81 (cited on page 171).

Rissman, Lilia (2010). ‘Instrumental with, Locatum with and the Argu-
ment/Adjunct Distinction’. In: LSA Annual Meeting Extended Abstracts
1, p. 23. doi: 10.3765/exabs.v0i0.502 (cited on page 170).

– (2016). ‘Cinderella Broke and Broke: Object Deletion and Manner-
Result Complementarity’. In: Proceedings of CLS 51. Chicago Linguistic
Society, pp. 425–439 (cited on pages 35, 48).

Rissman, Lilia and Kyle Rawlins (2017). ‘Ingredients of Instrumental
Meaning’. In: Journal of Semantics 34.3, pp. 507–537. doi: 10.1093/jos/
ffx003 (cited on page 170).

Rissman, Lilia, Kyle Rawlins, and Barbara Landau (2015). ‘Using In-
struments to Understand Argument Structure: Evidence for Gradient
Representation’. In: Cognition 142, pp. 266–290. doi: 10 . 1016 / j .
cognition.2015.05.015 (cited on page 170).

Rizzi, Luigi (1986). ‘Null Objects in Italian and the Theory of Pro’. In:
Linguistic Inquiry 17.3, pp. 501–557 (cited on page 16).

Roberge, Yves (2002). ‘Transitivity requirement effects and the EPP’. In:
Western Conference on Linguistics (cited on page 22).

Ruda, Marta (2014). ‘Missing Objects in Special Registers: The Syn-
tax of Null Objects in English’. In: Canadian Journal of Linguistic-

https://doi.org/10.1093/acprof:oso/9780199544325.003.0002
https://doi.org/10.13097/archive-ouverte/unige:561
https://doi.org/10.1016/S0010-0277(96)00722-6
https://doi.org/10.3765/exabs.v0i0.502
https://doi.org/10.1093/jos/ffx003
https://doi.org/10.1093/jos/ffx003
https://doi.org/10.1016/j.cognition.2015.05.015
https://doi.org/10.1016/j.cognition.2015.05.015


254 References

s/Revue canadienne de linguistique 59.3, pp. 339–372. doi: 10.1017/
S0008413100000396 (cited on page 14).

Ruda, Marta (2017). On the Syntax of Missing Objects: A Study with Special
Reference to English, Polish, and Hungarian. Vol. 244. Linguistik Aktuel-
l/Linguistics Today. Amsterdam: John Benjamins Publishing Company
(cited on pages 39, 103).

Ruppenhofer, Josef Karl (2004). ‘The interaction of valence and informa-
tion structure’. PhD thesis. University of California, Berkeley (cited on
page 50).

– (2005). ‘Regularities in null instantiation’. Manuscript. University of
Colorado (cited on pages 12, 170).

Ruppenhofer, Josef Karl, Philip Gorinski, and Caroline Sporleder (2011).
‘In search of missing arguments: A linguistic approach’. In: Proceedings
of the international conference Recent advances in natural language processing
2011, pp. 331–338 (cited on page 170).

Ruppenhofer, Josef Karl and Laura A. Michaelis (2010). ‘A Constructional
Account of Genre-Based Argument Omissions’. In: Constructions and
Frames 2.2, pp. 158–184. doi: 10.1075/cf.2.2.02rup (cited on pages 13–
15).

– (2014). ‘Frames and the Interpretation of Omitted Arguments in En-
glish’. In: Pragmatics & Beyond New Series. Ed. by Stacey Katz Bourns
and Lindsy L. Myers. Vol. 244. Amsterdam: John Benjamins Publishing
Company, pp. 57–86. doi: 10.1075/pbns.244.04rup (cited on pages 16,
170).

Rutherford, William E. (1998). A workbook in the structure of English:
Linguistic principles and language acquisition. Blackwell Malden, MA
(cited on page 10).

S

Schulte im Walde, Sabine, Christian Hying, Christian Scheible, and Hel-
mut Schmid (2008). ‘Combining EM Training and the MDL Principle
for an Automatic Verb Classification Incorporating Selectional Pref-
erences’. In: Proceedings of ACL-08: HLT. ACL-HLT 2008. Columbus,
Ohio: Association for Computational Linguistics, pp. 496–504 (cited
on page 92).

Schütze, Carson T. (1996 [2016]). ‘The Empirical Base of Linguistics:
Grammaticality Judgments and Linguistic Methodology’. In: Classics
in Linguistics, 1.01 MB. doi: 10.17169/LANGSCI.B89.100 (cited on
pages 60, 169).

Scott, Kate (2006). ‘When less is more: Implicit arguments and relevance
theory’. In: UCL Working Papers in Linguistics 18, pp. 139–170 (cited on
page 13).

Shannon, Claude E. (1948). ‘A mathematical theory of communication’.
In: The Bell system technical journal 27.3, pp. 379–423 (cited on page 95).

Shutova, Ekaterina, Niket Tandon, and Gerard de Melo (2015). ‘Percep-
tually Grounded Selectional Preferences’. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Beĳing, China: Association for Computational Linguistics,
pp. 950–960. doi: 10.3115/v1/P15-1092 (cited on page 92).

https://doi.org/10.1017/S0008413100000396
https://doi.org/10.1017/S0008413100000396
https://doi.org/10.1075/cf.2.2.02rup
https://doi.org/10.1075/pbns.244.04rup
https://doi.org/10.17169/LANGSCI.B89.100
https://doi.org/10.3115/v1/P15-1092


References 255

Sigurðsson, Halldór Ármann and Joan Maling (2008). ‘Argument Drop
and the Empty Left Edge Condition’. In:Working papers in Scandinavian
syntax. Vol. 81, pp. 1–27 (cited on page 13).

Smith, Carlota S. (1991). The parameter of aspect. Vol. 43. Springer Science
& Business Media (cited on pages 38, 102).

Smolensky, Paul (2006). ‘Harmony in Linguistic Cognition’. In: Cognitive
Science 30.5, pp. 779–801 (cited on page 59).

Smolensky, Paul, Géraldine Legendre, and Yoshiro Miyata (1993). ‘In-
tegrating connectionist and symbolic computation for the theory of
language’. In: Current Science, pp. 381–391 (cited on page 58).

Smolensky, Paul and Alan Prince (1993). ‘Optimality Theory: Constraint
interaction in generative grammar’. In: Optimality Theory in phonology
3 (cited on pages 52, 53, 59, 60).

Smollett, Rebecca (2005). ‘Quantized direct objects don’t delimit after all’.
In:Perspectives on aspect. Ed. byHenk J. Verkuyl, Henriette de Swart, and
Angeliek van Hout. Vol. 32. Studies in Theoretical Psycholinguistics.
Springer, pp. 41–59. doi: 10.1007/1- 4020- 3232- 3_3 (cited on
pages 35, 39, 42).

Somers, Harold L. (1984). ‘On the Validity of the Complement-Adjunct
Distinction in Valency Grammar’. In: Linguistics 22.4. doi: 10.1515/
ling.1984.22.4.507 (cited on page 10).

Sopata, Aldona (2016). ‘Null objects in adult and child Polish: Syntax,
discourse and pragmatics’. In: Lingua 183, pp. 86–106 (cited on pages 31,
43, 173).

Sorace, Antonella and Frank Keller (2005). ‘Gradience in Linguistic Data’.
In: Lingua 115.11, pp. 1497–1524. doi: 10.1016/j.lingua.2004.07.002
(cited on pages 62, 63).

Spärck Jones, Karen (1973). ‘Index term weighting’. In: Information storage
and retrieval 9.11, pp. 619–633 (cited on page 95).

Sprouse, Jon (2007). ‘Continuous acceptability, categorical grammaticality,
and experimental syntax’. In: Biolinguistics 1, pp. 123–134 (cited on
pages 60, 62).

– (2015). ‘Three Open Questions in Experimental Syntax’. In: Linguistics
Vanguard 1.1. doi: 10.1515/lingvan-2014-1012 (cited on page 62).

– (2018). ‘Acceptability Judgments and Grammaticality, Prospects and
Challenges’. In: Syntactic Structures after 60 Years. Ed. by Norbert
Hornstein,HowardLasnik, Pritty Patel-Grosz, andCharlesYang. Berlin,
Boston: De Gruyter, pp. 195–224. doi: 10.1515/9781501506925-199
(cited on page 62).

Stark, Elisabeth and Petra Meier (2017). ‘Argument Drop in Swiss What-
sApp Messages’. In: Zeitschrift für französische Sprache und Literatur
127.3, p. 30 (cited on pages 11, 14).

Starosta, Stanley (1978). ‘The one per sent solution’. In: Valence, Semantic
Case, and Grammatical Relations: Workshop Studies Prepared for the 12th
International Congress of Linguists, Vienna, August 29th to September 3rd,
1977. Ed. by Werner Abraham. Vol. 1. Amsterdam: John Benjamins
Publishing, pp. 459–576 (cited on page 26).

Stoica, Irina (2017). ‘Parametric Variation in the Role of Viewpoint Aspect
in the Omission of Direct Objects’. In: 13th Conference on British and
American Studies. Cambridge Scholars Publishing (cited on page 44).

Stosic, Dejan (2019). ‘Manner as a Cluster Concept: What Does Lexical
Coding of Manner of Motion Tell Us about Manner?’ In: Human
Cognitive Processing. Ed. by Michel Aurnague and Dejan Stosic. Vol. 66.

https://doi.org/10.1007/1-4020-3232-3_3
https://doi.org/10.1515/ling.1984.22.4.507
https://doi.org/10.1515/ling.1984.22.4.507
https://doi.org/10.1016/j.lingua.2004.07.002
https://doi.org/10.1515/lingvan-2014-1012
https://doi.org/10.1515/9781501506925-199


256 References

Amsterdam: John Benjamins Publishing Company, pp. 142–177. doi:
10.1075/hcp.66.04sto (cited on page 34).

Stosic, Dejan (2020). ‘Defining the concept of manner: An attempt to
order chaos’. In: Testi e linguaggi 14. doi: 10.14273/unisa-3440 (cited
on page 34).

Stuntebeck, Franziska (2018). ‘Annotating argument drop in the Swiss
Whatsapp corpus’. In: Proceedings of Generative Grammar in Geneva 11,
pp. 1–13 (cited on page 14).

T

Talmy, Leonard (1991). ‘Path to realization. A typology of event conflation’.
In: Annual Meeting of the Berkeley Linguistics Society. Vol. 17. 1, pp. 480–
519 (cited on page 136).

– (2000). Toward a cognitive semantics. Vol. 2. Cambridge: MIT Press (cited
on page 136).

Taylor, John R. (1995). Linguistic categorization. OUP Oxford (cited on
page 8).

Tenny, Carol L. (1994). Aspectual roles and the syntax-semantics interface.
Vol. 52. Studies in Linguistics and Philosophy. Springer (cited on
pages 25, 39, 42).

Tesar, Bruce and Paul Smolensky (1993). The Learnability of Optimality
Theory: An Algorithm and Some Basic Complexity Results. DOI: 10.7282/
T34Q7SB7 (Tech report) (cited on page 64).

Tesnière, Lucien (1959 [2015]).Elements of structural syntax. John Benjamins
Publishing Company (cited on page 63).

Tonelli, Sara and Rodolfo Delmonte (2011). ‘Desperately Seeking Implicit
Arguments in Text’. In: Proceedings of the ACL 2011 Workshop on Re-
lational Models of Semantics. Portland, Oregon, USA: Association for
Computational Linguistics, pp. 54–62 (cited on pages 12, 13, 16).

Tsimpli, Ianthi Maria and Despina Papadopoulou (2006). ‘Aspect and
Argument Realization: A Study on Antecedentless Null Objects in
Greek’. In: Lingua 116.10, pp. 1595–1615. doi: 10.1016/j.lingua.2005.
07.011 (cited on pages 42–44, 173).

Tsunoda, Tasaku (1999). ‘Aspect and Transitivity of Iterative Construc-
tions in Warrungu’. In: Tense-Aspect, Transitivity and Causativity: Essays
in Honor of Vladimir Nedjalkov. Ed. by Werner Abraham and Leonid
Kulikov, pp. 3–19 (cited on page 48).

Turney, Peter D. and Patrick Pantel (2010). ‘From Frequency to Meaning:
Vector Space Models of Semantics’. In: Journal of Artificial Intelligence
Research 37, pp. 141–188. doi: 10.1613/jair.2934 (cited on page 62).

V

Van de Cruys, Tim (2014). ‘A Neural Network Approach to Selectional
PreferenceAcquisition’. In:Proceedings of the 2014Conference onEmpirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Associ-
ation for Computational Linguistics, pp. 26–35. doi: 10.3115/v1/D14-
1004 (cited on page 92).

https://doi.org/10.1075/hcp.66.04sto
https://doi.org/10.14273/unisa-3440
10.7282/T34Q7SB7
10.7282/T34Q7SB7
https://doi.org/10.1016/j.lingua.2005.07.011
https://doi.org/10.1016/j.lingua.2005.07.011
https://doi.org/10.1613/jair.2934
https://doi.org/10.3115/v1/D14-1004
https://doi.org/10.3115/v1/D14-1004


References 257

Van Heuven, Walter J. B., Pawel Mandera, Emmanuel Keuleers, andMarc
Brysbaert (2014). ‘SUBTLEX-UK: A new and improved word frequency
database for British English’. In:Quarterly journal of experimental psychol-
ogy 67.6, pp. 1176–1190. doi: 10.1080/17470218.2013.850521 (cited
on page 107).

Van Valin, Robert and Randy LaPolla (1997). Syntax: Structure, meaning,
and function. Cambridge University Press (cited on pages 18, 21, 39, 63).

Vater, Heinz (1978). ‘On the possibility of distinguishing between comple-
ments and adjuncts’. In: Valence, semantic case and grammatical relations
1, pp. 21–45 (cited on page 63).

Vendler, Zeno (1957). ‘Verbs and Times’. In: The Philosophical Review 66.2,
pp. 143–160. doi: 10.2307/2182371 (cited on pages 38, 39, 69, 70).

Verkuyl, Henk J. (1972). On the Compositional Nature of the Aspects.
Vol. Foundations of Language Supplementary Series. 15. Dordrecht,
Netherlands: Reidel Publishing Company (cited on page 39).

– (1989). ‘Aspectual classes and aspectual composition’. In: Linguistics
and philosophy, pp. 39–94 (cited on page 39).

Villavicencio, Aline (2002). ‘Learning to Distinguish PP Arguments from
Adjuncts’. In: Proceeding of the 6th Conference on Natural Language Learn-
ing - COLING-02. Vol. 20. Not Known: Association for Computational
Linguistics, pp. 1–7. doi: 10.3115/1118853.1118886 (cited on page 63).

Virtanen, Pauli et al. (2020). ‘SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python’. In: Nature Methods 17, pp. 261–272.
doi: 10.1038/s41592-019-0686-2 (cited on page 141).

W

Wagner, Laura (2001). ‘Aspectual influences on early tense comprehen-
sion’. In: Journal of Child Language 28.3, p. 661 (cited on pages 44, 45,
102).

Wasow, Thomas (2007). ‘Gradient data and gradient grammars’. In:
Proceedings from the Annual Meeting of the Chicago Linguistic Society.
Vol. 43. 1. Chicago Linguistic Society, pp. 255–271 (cited on page 62).

Weir, Andrew (2017). ‘Object Drop and Article Drop in Reduced Written
Register’. In: Linguistic Variation 17.2, pp. 157–185. doi: 10.1075/lv.
14016.wei (cited on page 14).

Weskott, Thomas and Gisbert Fanselow (2011). ‘On the Informativity
of Different Measures of Linguistic Acceptability’. In: Language 87.2,
pp. 249–273. doi: 10.1353/lan.2011.0041 (cited on pages 106, 112).

White,Michael (1993). ‘The imperfectiveparadox and trajectory-of-motion
events’. In: 31st Annual Meeting of the Association for Computational
Linguistics, pp. 283–285 (cited on page 41).

Wierzbicka, Anna (1982). ‘Why Can You Have a Drink When You Can’t
*Have an Eat?’ In: Language 58.4, pp. 753–799. doi: 10.2307/413956
(cited on page 26).

Willim, Ewa (2006).Event, individuation and countability: A studywith special
reference to English and Polish. Kraków: Wydawnictwo Uniwersytetu
Jagiellońskiego (cited on page 39).

Wilson, Deirdre and Dan Sperber (2000). ‘Truthfulness and relevance’.
In: UCL Working Papers in Linguistics 12, pp. 215–254 (cited on page 23).

https://doi.org/10.1080/17470218.2013.850521
https://doi.org/10.2307/2182371
https://doi.org/10.3115/1118853.1118886
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1075/lv.14016.wei
https://doi.org/10.1075/lv.14016.wei
https://doi.org/10.1353/lan.2011.0041
https://doi.org/10.2307/413956


258 References

Y

Yankes, Andrew (2021 [2022]). ‘Object drop in English: A statistical
and Optimality Theoretical analysis’. MA thesis. Carnegie Mellon
University (cited on pages 56, 57, 73, 74, 166).

Yasutake, Tomoko (1987). ‘Objectless Transitives in English’. In: The
Bulletin of Aichi University of Education 36, pp. 43–55 (cited on pages 10,
16, 20, 23, 24).

Yousefi, Moslem and Fatemeh Mardian (2019). ‘Analyzing Meaning: An
Introduction to Semantics and Pragmatics: Paul L. Kroeger Berlin:
Language Science Press, 2018, Xiv+482 Pp.’ In: Australian Journal of
Linguistics, pp. 1–3. doi: 10.1080/07268602.2019.1680090 (cited on
page 43).

Z

Zapirain, Beñat, Eneko Agirre, Lluís Màrquez, and Mihai Surdeanu
(2013). ‘Selectional Preferences for Semantic Role Classification’. In:
Computational Linguistics 39.3, pp. 631–663. doi: 10.1162/COLI\_a\
_00145 (cited on page 92).

Zipf, George K. (1949). Human behavior and the principle of least effort.
Addison-Wesley (cited on page 15).

https://doi.org/10.1080/07268602.2019.1680090
https://doi.org/10.1162/COLI\_a\_00145
https://doi.org/10.1162/COLI\_a\_00145

	Implicit indefinite objects at the syntax-semantics-pragmatics interface
	Abstract
	Contents
	Introduction
	Overview
	Contents within and without

	Theory and literature review
	Indefinite object drop
	Transitivity as a prototype
	Definite vs indefinite drop
	Defining the indefinite
	How many lexical entries?
	A working definition of "indefinite object drop"

	Factors allowing indefinite object drop
	Semantic factors
	Aspectual factors
	Pragmatic factors
	A note on frequency
	Final considerations

	Towards a Stochastic Optimality Theoretic account of indefinite object drop
	Standard Optimality Theory
	Weighted approaches to constraint ranking

	Medina's (2007) model
	The input and the output
	Predictors
	Constraints and their ranking
	Defining a probabilistic constraint ranking
	Implementing a probabilistic constraint ranking


	Experiments and results
	Linguistic factors used as predictors
	Recoverability
	Telicity
	Perfectivity
	Iterativity
	Manner specification

	Collecting acceptability judgments: materials and methods
	Operative choices
	Target verbs
	Design
	Stimuli
	Setting

	Exploring the acceptability judgments
	Making sense of the results: computational implementation
	English results
	Italian results
	Closing remarks

	Predicting the grammaticality of implicit objects
	Introduction
	A full account of the full models
	Final remarks


	Conclusions
	Conclusions and open questions
	Final comments
	Future directions


	Appendix
	Verbs used in the stimuli
	Target verbs
	Filler verbs

	Behavioral PISA
	English stimuli
	Italian stimuli

	Verb-dependent predictors of object drop
	Resnik's SPS scores
	Computational PISA scores
	Behavioral PISA scores
	Telicity
	Manner specification

	Sentence stimuli for the behavioral experiment about object drop
	English
	Italian

	Stochastic OT models of object drop in English and Italian
	English
	Italian

	Squared errors: distance between actual judgments and values predicted by the model
	English
	Italian


	References
	References


