[Corpora-List] Journal of Interesting Negative Results in NLP and ML
szpak at mail.site.uottawa.ca
szpak at mail.site.uottawa.ca
Fri Apr 18 14:04:53 UTC 2008
We are happy to announce the on-line publication of the first article in the Journal of Interesting Negative Results in Natural Language Processing and Machine Learning. Please visit http://www.jinr.org and click on "articles".
JINR is an electronic journal, with a printed version to be negotiated with a major publisher once we have established a steady presence. The journal will bring to the fore research in Natural Language Processing and Machine Learning that uncovers interesting negative results.
It is becoming more and more obvious that the research community in general, and those who work NLP and ML in particular, are biased towards publishing successful ideas and experiments. Insofar as both our research areas focus on theories "proven" via empirical methods, we are sure to encounter ideas that fail at the experimental stage for unexpected, and often interesting, reasons. Much can be learned by analysing why some ideas, while intuitive and plausible, do not work. The importance of counter-examples for disproving conjectures is already well known. Negative results may point to interesting and important open problems. Knowing directions that lead to dead-ends in research can help others avoid replicating paths that take them nowhere. This might accelerate progress or even break through walls!
We propose this journal as a resource that gives a voice to negative results which stem from intuitive and justifiable ideas, proven wrong through thorough and well-conducted experiments. We also encourage the submission of short papers/communications presenting counter-examples to usually accepted conjectures or to published papers.
The journal's scope encompasses all areas of Natural Language Processing and Machine Learning. Papers published in JINR will meet the highest quality standards, as measured by the originality and significance of the contribution. They will describe research with theoretical and practical significance. All theories and ideas will have to be clearly stated and justified by a deep literature review.
Vivi Nastase, EML Research
Stan Szpakowicz, SITE, University of Ottawa
--
Stan Szpakowicz, PhD, Professor __ 613-562-5800/6687
SITE, Computer Science _______ szpak at site.uottawa.ca
University of Ottawa ____ www.site.uottawa.ca/~szpak
_______________________________________________
Corpora mailing list
Corpora at uib.no
http://mailman.uib.no/listinfo/corpora
More information about the Corpora
mailing list