3 expos=?iso-8859-15?Q?=E9s_?=de Mark Jonhson (Macquarie University)
Pascal Amsili
Pascal.Amsili at LINGUIST.UNIV-PARIS-DIDEROT.FR
Fri Sep 6 15:36:07 UTC 2013
Bonjour,
De passage à Paris, Mark Jonhson va donner 3 exposés dans les semaines
qui viennent:
10th Sept, ENS, Institut d'Etude de la Cognition
12h: Synergies in Language Acquisition
12th Sept, LingLunch, Université Paris Diderot
12h: Language acquisition as statistical inference
20th Sept, séminaire Alpage, University Paris Diderot
11h: Grammars and Topic Models
Résumés et détails pratiques sont donnés ci-dessous.
Cordialement,
P. Amsili
----------------------------------------------------------------------
*
*
*Synergies in Language Acquisition**
**
**Mark Johnson**
**Macquarie University**
**
**noon, 10th September**, ENS*
ENS, Colloquium de L'institut d'Etude de la Cognition
12h à 13h30,
salle Langevin, 29 rue d'Ulm, 75005 Paris
http://www.cognition.ens.fr/ColloquiumIEC.html
Each human language contains an unbounded number of different
sentences. How can something so large and complex possibly be learnt?
Over the past two decades we've learned how to define probability
distributions over grammars and the linguistic structures they generate,
making it possible to define statistical models that learn regularities
of complex linguistic structures. Bayesian approaches are particularly
attractive because they can exploit "prior" (e.g., innate) knowledge as
well as learn statistical generalizations from the input. Here we use
computational models to investigate "synergies" in language acquisition,
where a "joint model" is capable of solving "chicken-and-egg" problems
that are challenging for conventional "staged learning" models.
*
*
*Language acquisition as statistical inference**
**
**Mark Johnson**
**Macquarie University**
**
**noon, 12th September, LingLunch*
Linglunch Paris Diderot
Thursday, 12th septembre 2013
12h-13h, salle 103
bâtiment Olympe de Gouges
(8) rue Albert Einstein, 75013
http://www.linguist.univ-paris-diderot.fr/linglunch.html
This talk argues that language acquisition -- in particular, syntactic
parameter setting -- is profitably viewed as a statistical inference
problem. I discuss some issues associated with statistical inference
that linguists might be concerned about, including the possibility of
"Zombie" parameter settings. The bulk of the talk focuses on estimating
parameters in a Stabler-style Minimalist Grammar framework. Building on
recent results of Hunter and Dyer (2013), we show how estimating weights
associated with lexical entries -- including the empty functional
categories that control parametric syntactic variation -- can be reduced
to estimating weights in what appears to be a new grammar formalism
called "feature-weighted context-free grammars", which is a MaxEnt
generalisation of the "tied context-free grammars" of Headden et al
(2009). Importantly, the partition function and its derivatives of a
feature-weighted context-free grammar can be calculated using a
generalisation inspired by the Inside-Outside algorithm of the
algorithms for calculating partition functions in Nederhof and Satta
(2009). We show how this can be used to learn lexical entries and verb
movement and XP movement parameters in three toy corpora.
*
*
*Grammars and Topic Models**
**
**Mark Johnson**
**Macquarie University**
**
**11am, 20th September, Alpage Group*
Séminaire ALPAGE
Friday, 20th september, 11h-12h30
salle 127
bâtiment Olympe de Gouges
(8) rue Albert Einstein, 75013
https://www.rocq.inria.fr/alpage-wiki/tiki-index.php?page=seminaire
Context-free grammars have been a cornerstone of theoretical computer
science and computational linguistics since their inception over half a
century ago. Topic models are a newer development in machine learning
that play an important role in document analysis and information
retrieval. It turns out there is a surprising connection between the
two that suggests novel ways of extending both grammars and topic
models. After explaining this connection, I go on to describe
extensions which identify topical multiword collocations and
automatically learn the internal structure of named-entity phrases.
These new models have applications in text data mining and information
retrieval.
------------------------------------
Pour se desinscire, envoyer un mel à parislinguists-unsubscribe at yahoogroups.com
Pour s'inscrire, envoyer un mel à parislinguists-subscribe at yahoogroups.comLiens Yahoo! Groupes
<*> Pour consulter votre groupe en ligne, accédez à :
http://fr.groups.yahoo.com/group/parislinguists/
<*> Vos options mail :
Mail individuel | Traditionnel
<*> Pour modifier vos options avec le Web, allez sur :
http://fr.groups.yahoo.com/group/parislinguists/join
((Compte Yahoo! requis)
<*> Pour modifier vos options par mail :
parislinguists-digest at yahoogroupes.fr
parislinguists-fullfeatured at yahoogroupes.fr
<*> Pour vous désincrire de ce groupe, envoyez un mail à :
parislinguists-desabonnement at yahoogroupes.fr
<*> L'utilisation de Yahoo! Groupes est soumise à l'acceptation des :
http://info.yahoo.com/legal/fr/yahoo/utos/terms/
More information about the Parislinguists
mailing list